

1/4" Multi-Turn Fully Sealed Container Cermet Trimmer

Due to their square shape and small size (6.8 mm x 6.8 mm x 5 mm), the multi-turn trimmers of the T63 series are ideally suited for PCB use, enabling high density board mounting with reduced space requirement between cards.

Six versions are available differing by the top or side position of the adjustment screw and by PC pins configuration.

The use of cermet for the resistive track ensures an excellent stability of nominal specifications throughout life.

FEATURES

- 0.25 W at 70 °C
- Industrial grade
- Tests according to CECC 41000 or IEC 60393-1
- Multi-turn operation
- Low contact resistance variation < 2 %
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DIMEN	SIONS in millimeters (±	0.5 mm)		
				Terminal Spacing on a 2.54 PCB
Т63ХА	0.45 2.54 2.54 2.54 0.5 x 0.5 2.3 ± 0.2	$6.8 \pm 0.2 4 \text{ min.}$ $6.8 \pm 0.2 \qquad b$ $6.8 \pm 0.2 \qquad c$ $0.7 \qquad 0.25 \qquad c$ $5.7 \pm 0.1 \qquad c$	5 max.	
т63ХВ	1.2 ± 0.3 2.54 2.54 2.54 2.54 0.5 x 0.5	6.8 ± 0.2 4 min. a a 6.8 ± 0.2 b c c c 0.7 Ø 1.8 5.7 ± 0.1	5 max.	
Т6ЗҮА	Ø 0.45 2.54 2.54 2.3 ± 0.2	$\begin{array}{c} 7.8 \text{ max.} \\ 6.8 \pm 0.2 4 \text{ min.} \\ \hline 0.8 \pm 0.2 & \text{min.} \\ \hline 0.8 \pm 0.2 & \text{min.} \\ \hline 0.2 & \text$	5 max.	
Т6ЗҮВ	1.2±0.3 2.54 2.54 2.54	6.8 ± 0.2 4 min. 6.8 ± 0.2 4 min. 6.8 ± 0.2 4 min. c c c c c c c c c c c c c c c c c c c	5 max. * * * 1 ± 0.1 1.3 ± 0.1	
T63ZA		$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
T63ZB		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 ± 0.1	

SHAY. www.vishay.com

Vishay Sfernice

T63

Resistive element		Cermet				
Electrical travel		14 turns ± 2				
Resistance range		10 Ω to 2.2 MΩ				
Standard series and on reques	t series E3	1 - 2 - 5 (1 - 2.2 - 4.7)				
Tolerance	Standard	± 10 %				
TOIEIANCE	On request	±5%				
	Linear	0.25 W at 70 °C				
Power rating		0.25 N H H H H H H H H H H H H H				
Circuit diagram		$ \begin{array}{c} a \\ c \\ (1) \\ b \\ (2) \end{array} \begin{array}{c} c \\ c \\ (3) \\ c \\ (3) \end{array} $				
Temperature coefficient		See Standard Resistance Element table				
Limiting element voltage (linear	law)	250 V				
Contact resistance variation		2 % Rn or 2 Ω				
End resistance (typical)		1 Ω				
Dielectric strength (RMS)		1000 V				
Insulation resistance (500 V _{DC})		10 ⁶ ΜΩ				

MECHANICAL SPECIFICATIONS				
Mechanical travel	15 turns ± 5			
Operating torque (max. Ncm)	1.5			
End stop torque	Clutch action			
Unit weight (max. g)	0.5			
Wiper (actual travel)	Positioned at approx. 50 %			
Terminals	Pure Sn (code e3)			

ENVIRONMENTAL SPECIFICATIONS				
Temperature range	-55 °C to +155 °C			
Climatic category	55/125/56			
Sealing	Fully sealed - IP67			

Vishay Sfernice

PERFORMANCES					
TESTS	CONDITIONS	TYPICAL VALUES AND DRIFTS			
12313	CONDITIONS	∆ R_T/R_T	∆ R₁₋₂/R₁₋₂	OTHER	
Electrical endurance	1000 h at rated power 90'/30' - ambient temperature 70 °C	±1%	±2 %	Contact res. variation: < 1 % Rn	
Climatic sequence Phase A dry heat 125 °C - 30 % Pr Phase B damp heat Phase C cold -55 °C Phase D damp heat 5 cycles		± 0.5 %	±1%	-	
Damp heat, steady state	56 days 40 °C, 93 % RH	± 0.5 %	±1%	Dielectric strength: 1000 V _{RMS} Insulation resistance: > $10^4 M\Omega$	
Rapid temperature change	5 cycles -55 °C to +125 °C	± 0.5 %	-	$\Delta V_{1-2}/V_{1-3} \leq \pm 1 \%$	
Shock	50 g at 11 ms 3 successive shocks in 3 directions	± 0.1 %	± 0.2 %	-	
Vibration	/ibration 10 Hz to 55 Hz /ibration 0.75 mm or 10 <i>g</i> during 6 h		-	$\Delta V_{1\text{-}2}/V_{1\text{-}3} \leq \pm \ 0.2 \ \%$	
Mechanical endurance	200 cycles	± (2 % + 3 Ω)	-	Contact res. variation: < 1 % Rn	

Note

• Nothing stated herein shall be construed as a guarantee of quality or durability.

STANDARD RESISTANCE ELEMENT DATA					
STANDARD		TYPICAL			
RESISTANCE	MAX. POWER AT 70 °C	MAX. WORKING VOLTAGE	MAX. WIPER CURRENT	TCR -55 °C +125 °C	
Ω	W	V	mA	ppm/°C	
10	0.25	1.58	158		
20	0.25	2.23	112		
50	0.25	3.5	77		
100	0.25	35	50		
200	0.25	7.07	35		
500	0.25	11.2	22		
1K	0.25	15.8	15.8		
2K	0.25	22.3	11.2		
5K	0.25	35.3	7.1		
10K	0.25	50	5	± 100	
20K	0.25	70.7	3.5		
25K	0.25	79	3.2		
50K	0.25	112	2.2		
100K	0.25	158	1.6		
200K	0.25	224	1.1		
250K	0.25	250	1.1		
500K	0.13	250	0.5		
1M	0.06	250	0.25		
2.2M	0.03	250	0.125		

MARKING

- Vishay trademark
- Model
- Style
- Ohmic value (in Ω, kΩ, MΩ)
- Tolerance (in %) only if non standard
- Manufacturing date
- Marking of terminal 3

PACKAGING


• In tube of 50 pieces code T20 (TU50)

www.vishay.com

Vishay Sfernice

T63

DESCRIPTION (for information only)						
Т63	XA	100K	10 %		TU	e3
MODEL	STYLE	VALUE	TOLERANCE	SPECIAL	PACKAGING	LEAD (Pb)-FREE

RELATED DOCUMENTS				
APPLICATION NOTES				
Potentiometers and Trimmers	www.vishay.com/doc?51001			
Guidelines for Vishay Sfernice Resistive and Inductive Components	www.vishay.com/doc?52029			
Selector guide	www.vishay.com/doc?49286			

ACCESSORIES	
Screwdrivers (to order separately)	www.vishay.com/doc?57015

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jul-2024