NHD-C160100CZ-RN-FBW

 COG (Chip-On-Glass) Liquid Crystal Display Module| NHD- | Newhaven Display |
| :--- | :--- |
| C160100- | 160×100 Pixels |
| CZ- | Model |
| R- | Reflective |
| N- | No Backlight |
| F- | FSTN (+) |
| B- | 6:00 Optimal View |
| W- | Wide Temperature |

Table of Contents

Document Revision History 2
Mechanical Drawing 3
Pin Description 4
Wiring Diagram 4
Electrical Characteristics 5
Optical Characteristics 5
Controller Information 5
Table of Commands 6
Timing Characteristics 9
Example Initialization Program 10
Quality Information 14

Additional Resources

> Support Forum: https://support.newhavendisplay.com/hc/en-us/community/topics
> GitHub: https://github.com/newhavendisplay
> Example Code: https://support.newhavendisplay.com/hc/en-us/categories/4409527834135-Example-Code/
> Knowledge Center: https://www.newhavendisplay.com/knowledge center.html
> Quality Center: https://www.newhavendisplay.com/quality center.htm|
> Precautions for using LCDs/LCMs: https://www.newhavendisplay.com/specs/precautions.pdf
> Warranty / Terms \& Conditions: https://www.newhavendisplay.com/terms.htm|

Document Revision History

Revision	Date	Description	Changed By
0	06/17/2007	Initial Release	-
1	09/11/2009	User Guide Reformat	BE
2	10/14/2009	Updated Electrical Characteristic	MC
3	12/08/2009	Updated Block Diagram, Pins 4 and 5, and Timing Characteristics	MC
4	09/02/2015	Mechanical Drawing Updated	AK
5	09/18/2015	Mechanical Drawing Updated	SB
6	08/09/2016	LCD Glass Supplier Changed	AK
7	06/11/2019	Pull Tab Added to Drawing \& Supply Current Updated	SB
8	04/24/2024	Date Code Format Updated on Mechanical Drawing	KL
9	05/20/2024	Mechanical Drawing Updated	KL

Mechanical Drawing

Pin Description

Pin No.	Symbol	External Connection	Function Description
1	CSB	MPU	Active LOW Chip Select signal
2	RST	MPU	Active LOW Reset signal
3	A0	MPU	Register Select signal. A0=1: Data, A0=0: Command
4	/WR	MPU	Active LOW Write signal
5	/RD	MPU	Active LOW Read signal
6-13	DB0-DB7	MPU	Bi-directional 8-bit data bus.
14	VDD	Power Supply	Supply voltage for LCD and logic (+3.0V)
15	Vss	Power Supply	Ground
16	Vout	Power Supply	Connect to 1uF cap to $\mathrm{V}_{\text {SS }}$ or V_{DD}
17	V_{4}	Power Supply	1.0uF-2.2uF cap to V $\mathrm{Vs}^{\text {S }}$
18	V_{3}	Power Supply	1.0uF-2.2uF cap to V $\mathrm{S}_{\text {s }}$
19	V_{2}	Power Supply	1.0uF-2.2uF cap to Vss
20	V_{1}	Power Supply	1.0uF-2.2uF cap to Vss

Recommended LCD connector: 0.5 mm pitch pins. Molex p / n : 52746-2070

Wiring Diagram

Electrical Characteristics

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Operating Temperature Range	Top	Absolute Max	-20	-	+70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tst	Absolute Max	-30	-	+80	${ }^{\circ} \mathrm{C}$
Supply Voltage	$V_{\text {DD }}$	-	2.7	3.0	3.3	V
Supply Current	IDD	Top $=25^{\circ} \mathrm{C}$,	0.38	0.75	1.13	mA
Supply for LCD (contrast)	VLCD	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	11.2	11.5	11.8	V
"H" Level input	$\mathrm{V}_{\text {IH }}$	-	$0.7 * V_{\text {DD }}$	-	$V_{\text {DD }}$	V
"L" Level input	$\mathrm{V}_{\text {IL }}$	-	Vss	-	0.3* $V_{\text {D }}$	V
"H" Level output	Vor	-	0.7* $\mathrm{V}_{\text {DD }}$	-	$V_{D D}$	V
"L" Level output	VoL	-	Vss	-	0.3* V_{DD}	V

Optical Characteristics

Item		Symbol	Condition	Min.	Typ.	Max.	Unit
Optimal Viewing Angles	Top	$\varphi Y+$	$C R \geq 2$	-	20	-	0
	Bottom	φY -		-	40	-	0
	Left	$\theta \mathrm{X}$ -		-	45	-	0
	Right	ӨX+		-	45	-	0
Contrast Ratio		CR	-	2	4	-	-
Response Time	Rise	TR	Top $=25^{\circ} \mathrm{C}$	-	70	104	ms
	Fall	T_{F}		-	140	215	ms

Controller Information

Built-in ST7528 Controller: https://support.newhavendisplay.com/hc/en-us/articles/4414862822295--ST7528

Table of Commands

Instruction	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
EXT $=0$ or 1											
Mode Set	0	0	0	0	1	1	1	0	0	0	2-byte instruction to set

EXT=0

Read display data	1	1	Read data								Read data into DDRAM
Write display data	1	0	Write data								Write data into DDRAM
Read status	0	1	BUSY	ON	RES	MF2	MF1	MF0	DS1	DS0	Read the internal status
ICON control register ON/OFF	0	0	1	0	1	0	0	0	1	ICON	$\mathrm{ICON}=0 \text { : }$ ICON disable(default) ICON=1: ICON enable \& set the page address to 16
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address
Set column address MSB	0	0	0	0	0	1	Y9	Y8	Y7	Y6	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y5	Y4	Y3	Y2	Set column address LSB
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode
Reset modify-read	0	0	1	1	1	0	1	1	1	0	release modify-read mode
Display ON/OFF	0	0	1	0	1	0	1	1	1	D	$\begin{array}{\|l\|} \hline D=0 \text { : Display OFF } \\ D=1 \text { : Display ON } \\ \hline \end{array}$
Set initial display line register	0	0	0	1	0	0	0	0	x^{\prime}	x^{\prime}	2-byte instruction to specify the initial display line to realize vertical scrolling
	0	0	x^{\prime}	S6	S5	S4	S3	S2	S1	S0	
Set initial COM0 register	0	0	0	1	0	0	0	1	${ }^{\prime}$	x^{\prime}	2-byte instruction to specify the initial COM0 to realize window scrolling
	0	0	x^{\prime}	C6	C5	C4	C3	C2	C1	C0	
Set partial display duty ration	0	0	0	1	0	0	1	0	${ }^{\prime}$	${ }^{\prime}$	2-byte instruction to set partia display duty ratio
	0	0	D7	D6	D5	D4	D3	D2	D1	D0	
Set N -line inversion	0	0	0	1	0	0	1	1	${ }^{\prime}$	x^{\prime}	2-byte instruction to set N -line inversion register
	0	0	x^{\prime}	x^{\prime}	x^{\prime}	N4	N3	N2	N1	N0	
Release N -line inversion	0	0	1	1	1	0	0	1	0	0	Release N -line inversion mode
Reverse display ON/OFF	0	0	1	0	1	0	0	1	1	REV	REV $=0$: normal display REV=1: reverse display
Entire display ON/OFF	0	0	1	0	1	0	0	1	0	EON	EON $=0$: normal display EON=1: entire display ON

I N T ER N A T I O N A L

Instruction	AO	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
EXT=1											
Set white mode and $1^{* t}$ frame, set pulse width	0	0	1	0	0	0	0	0	0	0	Set white mode and 1st frame
	0	0	X'	X'	GA05	GA04	GA03	GA02	GA01	GA00	
Set white mode and $2^{\text {nd }}$ frame set pulse width	0	0	1	0	0	0	0	0	0	1	Set white mode and 2nd frame
	0	0	X^{\prime}	X'	GA05	GA04	GA03	GA02	GA01	GA00	
Set white mode and $3^{\text {rd }}$ frame, set pulse width	0	0	1	0	0	0	0	0	1	0	Set white mode and 3rd frame
	0	0	X'	X'	GA05	GA04	GA03	GA02	GA01	GA00	
Set white mode and $4^{\text {th }}$ frame, set pulse width	0	0	1	0	0	0	0	0	1	1	Set white mode and 4th frame
	0	0	X^{\prime}	X'	GA05	GA04	GA03	GA02	GA01	GA00	
Set gray level 1 mode	0	0	$84 \mathrm{H} \sim 87 \mathrm{H}$ (4 bytes)								Set gray level1
Set gray level 2 mode	0	0	$88 \mathrm{H} \sim 8 \mathrm{BH}$ (4 bytes)								Set gray level2
Set gray level 3 mode	0	0	$8 \mathrm{CH} \sim 8 \mathrm{FH}$ (4bytes)								Set gray level3
Set gray level 4 mode	0	0	90H~93H (4bytes)								Set gray level4
Set gray level 5 mode	0	0	94H~97H (4bytes)								Set gray level5
Set gray level 6 mode	0	0	98H~9BH (4 bytes)								Set gray level6
Set gray level 7 mode	0	0	9CH~9FH (4 bytes)								Set gray level7
Set gray level 8 mode	0	0	$\mathrm{A} 0 \mathrm{H} \sim \mathrm{A} 3 \mathrm{H}$ (4 bytes)								Set gray level8
Set gray level 9 mode	0	0	$\mathrm{A} 4 \mathrm{H} \sim \mathrm{A} 7 \mathrm{H}$ (4 bytes)								Set gray level9
Set gray level 10 mode	0	0	$\mathrm{A} 8 \mathrm{H} \sim \mathrm{ABH}$ (4 bytes)								Set gray level10
Set gray level 11mode	0	0	$\mathrm{ACH} \sim \mathrm{AFH}$ (4 bytes)								Set gray level11
Set gray level 12 mode	0	0	$\mathrm{BOH} \sim \mathrm{B} 3 \mathrm{H}$ (4 bytes)								Set gray level12
Set gray level 13 mode	0	0	B4H~B7H (4 bytes)								Set gray level13
Set gray level 14 mode	0	0	B8H~BBH (4 bytes)								Set gray level14
Set Dark mode and 1st frame, set pulse width	0	0	1	0	1	1	1	1	0	0	Set Dark mode and 1st frame, set pulse width
	0	0	X'	X'	GAF5	GAF4	GAF3	GAF2	GAF1	GAFO	
Set Dark mode and 2nd frame, set pulse width	0	0	1	0	1	1	1	1	0	1	Set Dark mode and 2nd frame, set pulse width
	0	0	X'	X'	GAF5	GAF4	GAF3	GAF2	GAF1	GAFO	
Set Dark mode and 3rd frame, set pulse width	0	0	1	0	1	1	1	1	1	0	Set Dark mode and 3rd frame, set pulse width
	0	0	X'	X'	GAF5	GAF4	GAF3	GAF2	GAF1	GAFO	
Set Dark mode and 4th frame, set pulse width	0	0	1	0	1	1	1	1	1	1	Set Dark mode and 4th frame, set pulse width
	0	0	X'	X'	GAF5	GAF4	GAF3	GAF2	GAF1	GAFO	

Timing Characteristics

$\left(\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$						
Item	Signal	Symbol	Condition	Rating		Units
				Min.	Max.	
Address hold time	A0	tAH8		0	-	ns
Address setup time		tAW8		0	-	
System cycle time		tCYC8		240	-	
Enable L pulse width (WRITE)	WR	tCCLW		80	-	
Enable H pulse width (WRITE)		tCCHW		80	-	
Enable L pulse width (READ)	RD	tCCLR		140	-	
Enable H pulse width (READ)		tCCHR		80		
WRITE Data setup time	D0 to D7	tDS8		40	-	
WRITE Data hold time		tDH8		10	-	
READ access time		tACC8	$C L=100 \mathrm{pF}$	-	70	
READ Output disable time		tOH8	$C L=100 \mathrm{pF}$	5	50	

Example Initialization Program

void write_command(unsigned char datum)
\{
$\mathrm{A} 0=0$; /*Instruction register*/
$\mathrm{E}=1$;
P1 = datum;
CS1=0;
RW=0;
RW=1;
CS1=1;
\}
//--
void write_data(unsigned char datum)
\{
$\mathrm{A} 0=1$; /*DDRAM data register*/
$\mathrm{E}=1$;
P1=datum;
CS1=0;
RW=0;
RW=1;
CS1=1;
\}
|/---
void Icd_init(void)\{
write_command(0xA2); //ICON OFF;
write_command(OxAE); //Display OFF
write_command(0x48); //Set Duty ratio
write_command(0x80); //No operation
write_command(0xa1); //Set scan direction //changed from 0 to 1
write_command(0xc8); //SHL select
write_command(0x40); //Set START LINE
write_command(0x00);
write_command(0xab); //OSC on
write_command(0x64); //3x
delay(2000);
write_command(0x65); //4x
delay(2000);
write_command(0x66); //5x
delay(2000);
write_command(0x67); //6x
delay(2000);
write_command(Ra_Rb); //RESISTER SET
write_command(0x81); //Set electronic volume register
write_command(vopcode); //n=0~3f
write_command(0x57); //1/12bias
write_command(0x92); //FRC and pwm
write_command(0x2C);
delay(20000);//200ms
write_command(0x2E); delay(20000);//200ms write_command $(0 \times 2 \mathrm{~F})$; delay(20000);//200ms
write_command(0×92); write_command(0×38); write_command(0x75);
//start settings for 16-level grayscale write_command(0x97); //3frc,45pwm
write_command(0×80); write_command(0×00); write_command(0×81); write_command(0×00); write_command(0x82); write_command (0x00); write_command(0×83); write_command(0×00);
write_command(0x84); write_command(0x06); write_command (0×85); write_command(0x06); write_command(0x86); write_command(0x06); write_command(0×87); write_command(0x06);
write_command(0x88); write_command($0 \times 0 \mathrm{Ob}$); write_command(0×89); write_command(0x0b); write_command(0x8a); write_command(0x0b); write_command(0×8b); write_command(0x0b);
write_command $(0 \times 8 \mathrm{c})$; write_command(0×10); write_command(0x8d); write_command(0×10); write_command($0 \times 8 \mathrm{e}$); write_command (0×10); write_command(0x8f); write_command(0×10);
write_command (0×90); write_command(0x15); write_command(0x91); write_command(0x15); write_command(0×92); write_command(0×15); write_command(0x93); write_command(0x15);
write_command(0x94); write_command(0x1a); write_command(0x95); write_command(0x1a); write_command(0x96); write_command(0x1a); write_command(0x97);

//frc and pwm

 //external modewrite_command(0x1a);
write_command(0x98); write_command(0x1e); write_command(0x99); write_command(0x1e); write_command(0x9a); write_command(0x1e); write_command(0x9b); write_command(0x1e);
write_command(0x9c); write_command(0x23); write_command(0x9d); write_command(0×23); write_command(0×9 e); write_command(0x23); write_command(0x9f); write_command (0×23);
write_command(0xa0); write_command(0×27); write_command(0xa1); write_command (0×27); write_command(0xa2); write_command(0x27); write_command(0xa3); write_command(0×27);
write_command(0xa4); write_command(0x2b); write_command(0xa5); write_command(0x2b); write_command(0xa6); write_command(0×2b); write_command(0xa7); write_command(0x2b);
write_command(0xa8); write_command($0 \times 2 \mathrm{f}$); write_command(0xa9); write_command(0x2f); write_command(0xaa); write_command($0 \times 2 \mathrm{f}$); write_command(0xab); write_command(0x2f);
write_command(0xac); write_command(0×32); write_command(0xad); write_command(0x32); write_command(0xae); write_command(0×32); write_command(0xaf); write_command(0x32);
write_command(0xbO); write_command(0×35); write_command(0xb1); write_command(0x35); write_command(0xb2); write_command(0×35); write_command(0xb3); write_command(0x35);
write_command(0xb4);
write_command(0x38);
write_command(0xb5);
write_command(0x38);
write_command(0xb6);
write_command(0x38);
write_command(0xb7);
write_command(0×38);
write_command(0xb8);
write_command(0x3a);
write_command(0xb9);
write_command(0x3a);
write_command(0xba);
write_command(0x3a);
write_command(0xbb);
write_command(0x3a);
write_command(0xbc);
write_command($0 \times 3 \mathrm{c}$);
write_command(0xbd);
write_command(0x3c);
write_command(0xbe);
write_command($0 \times 3 \mathrm{c}$);
write_command(0xbf);
write_command(0x3c);
//end settings for 16-level grayscale write_command(0×38);
write_command(0x74); write_command(Oxaf); //Display ON
$\}$
//---

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	$+80^{\circ} \mathrm{C}, 48 \mathrm{hrs}$	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	$-30^{\circ} \mathrm{C}, 48 \mathrm{hrs}$	1,2
High Temperature Operation	Endurance test applying the electric stress (voltage \& current) and the high thermal stress for a long time.	$+70^{\circ} \mathrm{C} 48 \mathrm{hrs}$	2
Low Temperature Operation	Endurance test applying the electric stress (voltage \& current) and the low thermal stress for a long time.	$-20^{\circ} \mathrm{C}, 48 \mathrm{hrs}$	1,2
High Temperature / Humidity Operation	Endurance test applying the electric stress (voltage \& current) and the high thermal with high humidity stress for a long time.	$+40^{\circ} \mathrm{C}, 90 \% \mathrm{RH}, 48 \mathrm{hrs}$	1,2
Thermal Shock resistance	Endurance test applying the electric stress (voltage \& current) during a cycle of low and high thermal stress.	$-0^{\circ} \mathrm{C}, 30 \mathrm{~min}->25^{\circ} \mathrm{C}, 5 \mathrm{~min}->$ $50^{\circ} \mathrm{C}, 30 \mathrm{~min}=1 \mathrm{cycle}$ 10 cycles	
Vibration test	Endurance test applying vibration to simulate transportation and use.	$10-55 \mathrm{~Hz}, 15 \mathrm{~mm}$ amplitude. 60 sec in each of 3 directions $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ For 15 minutes	3
Static electricity test	$\mathrm{VS}=800 \mathrm{~V}, \mathrm{RS}=1.5 \mathrm{k} \Omega, \mathrm{CS}=100 \mathrm{pF}$ One time		

Note 1: No condensation to be observed.
Note 2: Conducted after 4 hours of storage at $25^{\circ} \mathrm{C}, 0 \% \mathrm{RH}$.
Note 3: Test performed on product itself, not inside a container.

