
VOM618A

Vishay Semiconductors

Low Input Current, Phototransistor Output, SOP-4, **Mini-Flat Package**

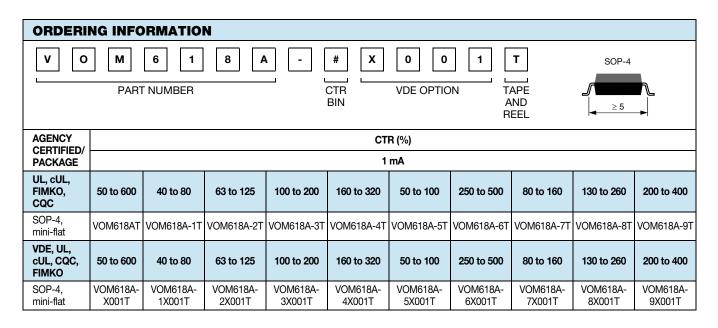
DESCRIPTION

The 110 °C rated VOM618A has a GaAs infrared emitting diode emitter, which is optically coupled to a silicon planar phototransistor detector, and is incorporated in a 4 pin 100 mil lead pitch miniflat package. It features a high current transfer ratio with low input current, low coupling capacitance, and high isolation voltage.

These coupling devices are designed for signal transmission between two electrically separated circuits.

FEATURES

- Operating temperature from 55 °C to + 110 °C
- SOP-4 mini-flat package
- CTR range 40 % to 600 %, $I_F = 1 \text{ mA}$
- Isolation test voltage, 3750 V_{BMS}
- Low saturation voltage
- · Fast switching times
- · Low coupling capacitance
- End-stackable, 0.100" (2.54 mm) spacing
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912


APPLICATIONS

- PLCs
- Telecommunication
- Lighting control system
- Solar inverters
- AC drives

AGENCY APPROVALS

(All parts are certified under base model VOM618A)

- UL1577, file no. E52744
- cUL tested to CSA 22.2 bulletin 5A
- DIN EN 60747-5-5 (VDE 0884-5), available with option 1
- FIMKO EN 60065 and EN 60950-1
- CQC: GB8898-2011, GB4943.1-2011

Rev. 1.3, 10-Dec-12

Document Number: 83449

COMPLIANT

GREEN

(5-2008)

Vishay Semiconductors

ABSOLUTE MAXIMUM RATING	i S (T _{amb} = 25 °C, unless oth	erwise specified)		
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
INPUT		· ·		
DC forward current		l _F	60	mA
Reverse voltage		V _R	6	V
Power dissipation		P _{diss}	70	mW
Surge forward current	t _p ≤ 10 μs	I _{FSM}	2.5	А
OUTPUT				
Collector emitter voltage		V _{CEO}	80	V
Emitter collector voltage		V _{ECO}	7	V
Collector current		Ι _C	50	mA
	t _p ≤ 1 ms	Ι _C	100	mA
Power dissipation		P _{diss}	150	mW
COUPLER				
Isolation test voltage between emitter and detector			3750	V _{RMS}
Total power dissipation		P _{tot}	170	mW
Operating temperature range		T _{amb}	- 55 to + 110	°C
Storage temperature range		T _{stg}	- 55 to + 150	°C
Junction temperature		Tj	125	°C
Soldering temperature ⁽¹⁾		T _{sld}	260	°C

Notes

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability.

⁽¹⁾ See "Assembly Instructions" for surface mounted devices (<u>www.vishay.com/doc?80054</u>).

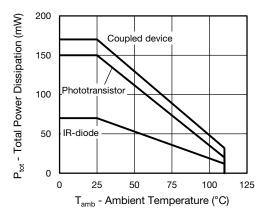


Fig. 1 - Total Power Dissipation vs. Ambient Temperature

VOM618A

www.vishay.com

Vishay Semiconductors

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
INPUT							
Forward voltage	I _F = 5 mA	V _F		1.1	1.6	V	
Reverse current	V _R = 6 V	I _R		0.01	10	μA	
Capacitance	$V_R = 0 V, f = 1 MHz$	Cj		9		pF	
OUTPUT	OUTPUT						
Collector emitter leakage current	V _{CE} = 20 V	I _{CEO}		0.4	100	nA	
Collector emitter breakdown voltage	I _C = 100 μA	BV _{CEO}	80			V	
Emitter collector breakdown voltage	I _E = 10 μA	BV _{ECO}	7			V	
Collector emitter capacitance	V _{CE} = 5 V, f = 1 MHz	C _{CE}		2.8		pF	
COUPLER							
Coupling capacitance	f = 1 MHz	C _C		0.3		pF	
Collector emitter saturation voltage	I _F = 1 mA, I _C = 0.25 mA	V _{CEsat}		0.12	0.4	V	
Cut-off frequency	I_F = 10 mA, V_{CC} = 5 V, R_L = 100 Ω	f _{ctr}		110		kHz	

Note

• Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

CURRENT TRANSFER RATIO (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
	I _F = 1 mA, V _{CE} = 5 V	VOM618A	CTR	50		600	%
		VOM618A-1	CTR	40		80	%
		VOM618A-2	CTR	63		125	%
I _C /I _F		VOM618A-3	CTR	100		200	%
		VOM618A-4	CTR	160		320	%
		VOM618A-5	CTR	50		100	%
		VOM618A-6	CTR	250		500	%
		VOM618A-7	CTR	80		160	%
		VOM618A-8	CTR	130		260	%
		VOM618A-9	CTR	200		400	%

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
NON-SATURATED						
Rise and fall time		t _r		5		μs
Fall time	$I_{\rm C} = 2 \text{ mA}, V_{\rm CC} = 5 \text{ V},$	t _f		4		μs
Turn-on time	$R_L = 100 \Omega$	t _{on}		7		μs
Turn-off time		t _{off}		6		μs
SATURATED						
Rise and fall time	$I_{F} = 1.6 \text{ mA}, V_{CC} = 5 \text{ V}, \\ R_{L} = 4.7 \text{ k}\Omega$	t _r		6		μs
Fall time		t _f		29		μs
Turn-on time		t _{on}		8		μs
Turn-off time		t _{off}		35		μs

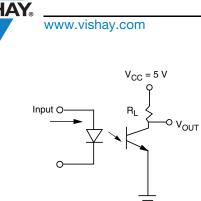
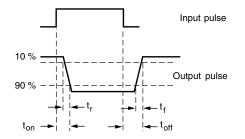
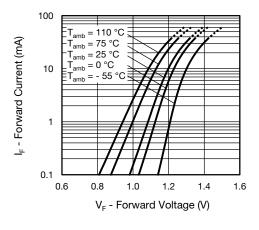
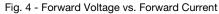


Fig. 2 - Test Circuit



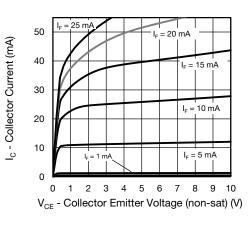

Fig. 3 - Test Circuit and Waveforms

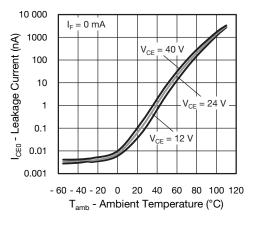

SAFETY AND INSULATION RATINGS						
PARAMETER	SYMBOL	VALUE	UNIT			
MAXIMUM SAFETY RATINGS		•				
Output safety power		P _{SO}	300	mW		
Input safety current		I _{si}	200	mW		
Safety temperature		T _S	150	°C		
Comparative tracking index	CTI	175				
INSULATION RATED PARAMETERS						
Maximum withstanding isolation voltage	V _{ISO}	3750	V _{RMS}			
Maximum transient isolation voltage	VIOTM	6000	V _{peak}			
Maximum repetitive peak isolation voltage		V _{IORM}	565	V _{peak}		
Insulation resistance	$T_{amb} = 25 \text{ °C}, V_{DC} = 500 \text{ V}$	R _{IO}	10 ¹²	Ω		
Isolation resistance	$T_{amb} = 100 \text{ °C}, V_{DC} = 500 \text{ V}$	R _{IO}	10 ¹¹	Ω		
Climatic classification (according to IE		55/110/21				
Environment (pollution degree in accor		2				
Internal creepage		≥ 5	mm			
External creepage			≥ 5	mm		
Clearance			≥ 5	mm		
Insulation thickness		≥ 0.4	mm			

Note

As per DIN EN 60747-5-5 (VDE 0884), § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)




Fig. 5 - Collector Current vs. Collector Emitter Voltage (non-saturated)

Rev.	1.3,	10-Dec-12
------	------	-----------

4 For technical questions, contact: <u>optocoupleranswers@vishay.com</u> Document Number: 83449

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

www.vishay.com

Fig. 6 - Collector Emitter Current vs. Ambient Temperature

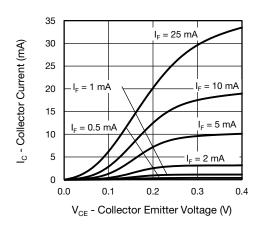


Fig. 7 - Collector Current vs. Collector Emitter Voltage (saturated)

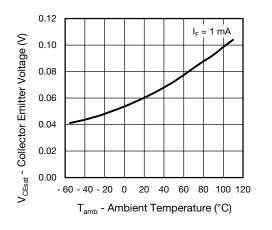


Fig. 8 - Collector Emitter Voltage vs. Ambient Temperature (saturated)

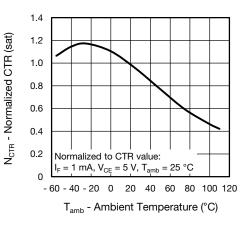


Fig. 9 - Normalized Current Transfer Ratio vs. Ambient Temperature (saturated)

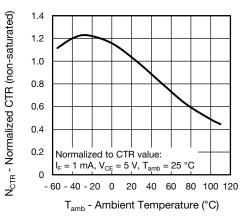
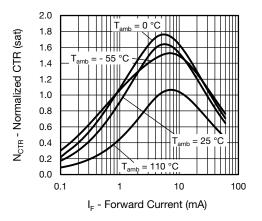
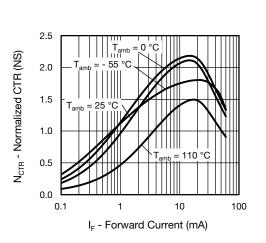


Fig. 10 - Normalized Current Transfer Ratio vs. Ambient Temperature (non-saturated)




Fig. 11 - Current Transfer Ratio vs. Forward Current (saturated) normalized to 1 mA at 25 $^\circ\text{C}$

Rev. 1.3, 10-Dec-12

5

For technical questions, contact: <u>optocoupleranswers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

www.vishay.com

Fig. 12 - Current Transfer Ratio vs. Forward Current (non-saturated) normalized to 1 mA at 25 $^\circ\text{C}$

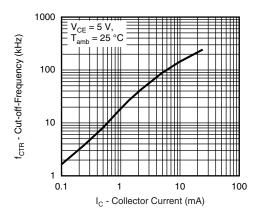


Fig. 13 - Cut-off Frequency (- 3 dB) vs. Collector Current

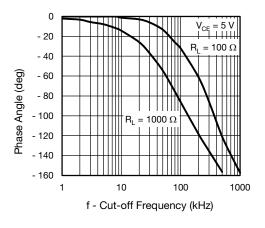


Fig. 14 - F_{CTR} vs. Phase Angle

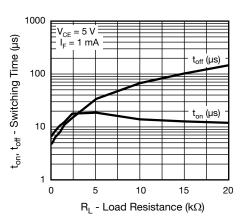
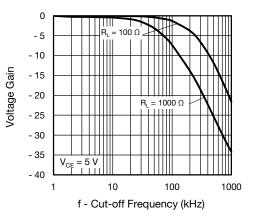
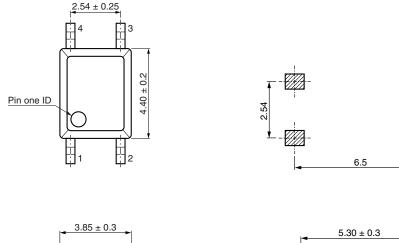
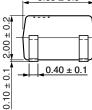
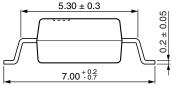


Fig. 15 - Switching Time vs. Load Resistance

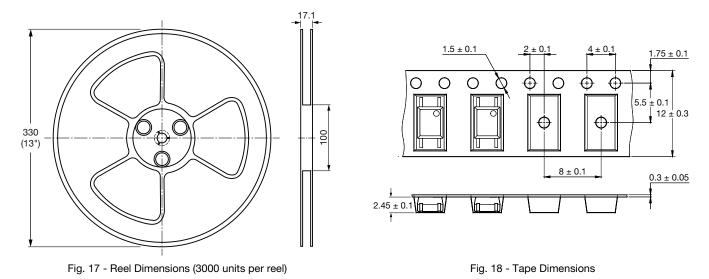

Fig. 16 - Voltage Gain vs. Cut-off Frequency



SHAY. www.vishay.com

PACKAGE DIMENSIONS in millimeters

i178048


PACKAGE MARKING (example of VOM618A-3X001T)

Notes

- Only option 1 is reflected in the package marking with the character "X".
- Tape and reel suffix (T) is not part of the package marking.

TAPE AND REEL DIMENSIONS in millimeters

Rev. 1.3, 10-Dec-12

7

Document Number: 83449

For technical questions, contact: <u>optocoupleranswers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jul-2024