

Vishay Semiconductors

Optocoupler, Phototransistor Output, Low Input Current, With Base Connection

LINKS TO ADDITIONAL RESOURCES

DESCRIPTION

The VO215AT, VO216AT, VO217AT are optically coupled pairs with a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The high CTR at low input current is designed for low power consumption requirements such as CMOS microprocessor interfaces.

FEATURES

- High current transfer ratio
- Isolation test voltage, 4000 V_{RMS}
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

RoHS

AGENCY APPROVALS

- <u>UL</u>
- <u>cUL</u>
- DIN EN 60747-5-5 (VDE 0884-5), available with option 1

ORDERING INFORMATION			
VO2	1 # #	A T TAPE AND REEL	SOIC-8
AGENCY CERTIFIED / PACKAGE		CTR (%)	
UL, cUL, VDE	≥ 20	≥ 50	≥ 100
SOIC-8	VO215AT	VO216AT	VO217AT

Vishay Semiconductors

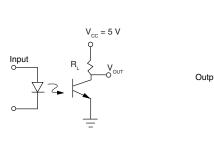
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
INPUT				
Peak reverse voltage		V _R	6	V
Peak forward current	1 µs, 300 pps	I _{FM}	1	A
Forward continuous current		l _F	60	mA
Power dissipation		P _{diss}	90	mW
Derate linearly from 25 °C			1.2	mW/°C
OUTPUT				
Collector emitter breakdown voltage		BV _{CEO}	30	V
Emitter collector breakdown voltage		BV _{ECO}	7	V
Collector base breakdown voltage		BV _{CBO}	70	V
I _{Cmax. DC}		I _{Cmax. DC}	50	mA
I _{Cmax.}	t < 1 ms	I _{Cmax.}	100	mA
Power dissipation		P _{diss}	150	mW
Derate linearly from 25 °C			2	mW/°C
COUPLER				
Isolation test voltage	1 s	V _{ISO}	4000	V _{RMS}
Total package dissipation	LED and detector	P _{tot}	240	mW
Derate linearly from 25 °C			3.2	mW/°C
Storage temperature		T _{stg}	-40 to +150	°C
Operating temperature		T _{amb}	-40 to +100	°C
Soldering time	At 260 °C		10	S

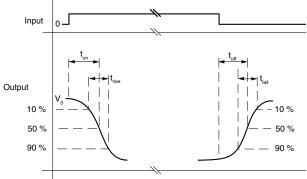
Note

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability.

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT				•	•	•
Forward voltage	I _F = 1 mA	V _F	-	1	1.5	V
Reverse current	V _R = 6 V	I _R	-	0.1	100	μA
Capacitance	V _R = 0 V	C _O	-	13	-	pF
OUTPUT	•					
Collector emitter breakdown voltage	I _C = 100 μA	BV _{CEO}	30	-	-	V
Emitter collector breakdown voltage	I _C = 10 μA	BV _{ECO}	7	-	-	V
Collector base breakdown voltage	I _C = 100 μA	BVCBO	100	-	-	V
Collector base current		ICBO	-	-	1	nA
Emitter base current		I _{EBO}	-	-	1	nA
Dark current collector emitter	$V_{CE} = 10 \text{ V}, \text{ I}_{F} = 0 \text{ A}$	I _{CEO}	-	5	50	nA
Collector emitter capacitance	$V_{CE} = 0$	C _{CE}	-	10	-	pF
Saturation voltage, collector emitter	I _F =1 mA, I _C = 0.1 mA	V _{CEsat}	-		0.4	V
COUPLER				•	•	•
Capacitance (input to output)		CIO	-	0.5	-	pF

Note

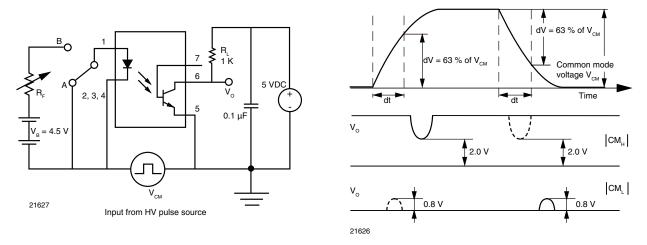

• Minimum and maximum values were tested requierements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.



Vishay Semiconductors

CURRENT TRANSFER RATIO ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
		VO215AT	CTR _{DC} 20CTR _{DC} 50	20	50	-	%
DC current transfer ratio	$I_{F} = 1 \text{ mA}, V_{CE} = 5 \text{ V}$	VO216AT		50	80	-	%
		VO217AT	CTR _{DC}	100	130	-	%

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Turn-on time	I_{C} = 2 mA, R_{L} = 100 Ω , V_{CC} = 10 V	t _{on}	-	3	-	μs
Turn-off time	I_{C} = 2 mA, R_{L} = 100 Ω , V_{CC} = 10 V	t _{off}	-	3	-	μs
Rise time	I_{C} = 2 mA, R_{L} = 100 Ω , V_{CC} = 10 V	t _r	-	3	-	μs
Fall time	I_{C} = 2 mA, R_{L} = 100 Ω , V_{CC} = 10 V	t _f	-	2	-	μs



iil215at_17

Fig. 1 - Switching Test Circuit

COMMON MODE TRANSIENT IMMUNITY							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Common mode transient immunity at logic high	V_{CM} = 1000 V_{P-P} , R_L = 1 k Ω , I_F = 0 mA	C _{MH}	-	5000	-	V/µs	
Common mode transient immunity at logic low	V_{CM} = 1000 V_{P-P} , R_L = 1 k Ω , I_F = 10 mA	C _{ML}	-	5000	-	V/µs	

3

For technical questions, contact: <u>optocoupler.answers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Climatic classification (according to IEC 68 part 1)			-	40 / 100 / 21	-	
Polution degree			-	2	-	
Comparative tracking index		CTI	175	-	399	
Isolation test voltage	1 s	V _{ISO}	4000	-	-	V _{RMS}
Peak transient overvoltage		V _{IOTM}	6000	-	-	V
Peak insulation voltage		V _{IORM}	560	-	-	V
Resistance (input to output)		R _{IO}	-	100	-	GΩ
Safety rating - power output		P _{SO}	-	-	350	mW
Safety rating - input current		I _{SI}	-	-	150	mA
Safety rating - temperature		T _{SI}	-	-	165	°C
External creepage distance			4	-	-	mm
External clearance distance			4	-	-	mm
Internal creepage distance			3.3	-	-	mm
Insulation thickness			0.2	-	-	mm

Note

• As per IEC 60747-5-2, §7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.

Vishay Semiconductors

TYPICAL CHARACTERISTICS ($T_{amb} = 25$ °C, unless otherwise specified)

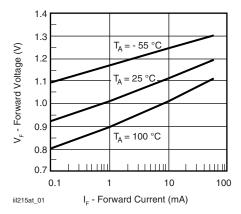


Fig. 3 - Forward Voltage vs. Forward Current

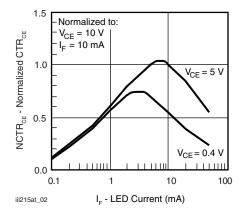


Fig. 4 - Normalized Non-Saturated and Saturated $\mbox{CTR}_{\mbox{CE}}$ vs. LED Current

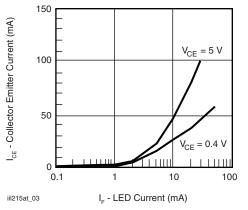


Fig. 5 - Collector Emitter Current vs. LED Current

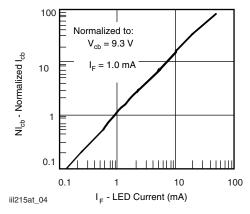


Fig. 6 - Normalized Collector Base Photocurrent vs. LED Current

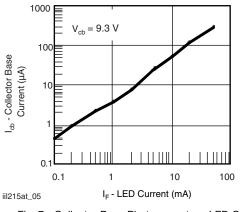


Fig. 7 - Collector Base Photocurrent vs. LED Current

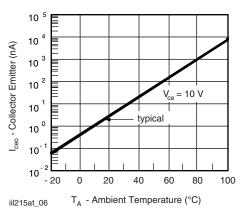


Fig. 8 - Collector Emitter Leakage Current vs. Temperature

Rev. 1.1, 15-May-2023

5

Document Number: 81955

For technical questions, contact: <u>optocoupler.answers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

2.0 70 °C Normalized to: 50 °C $Ib = 20 \ \mu A$ Nh_{FE(sat)} - Normalized 1.5 $V_{ce} = 10 V$ Saturated h_{FE} 1.0 0.4 V 0.5 11111 11111 111111 0.0 10 100 1000 iil215at_07 I_b - Base Current (μA)

Fig. 9 - Normalized Saturated h_{FF} vs. Base Current and Temperature

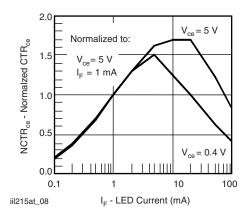
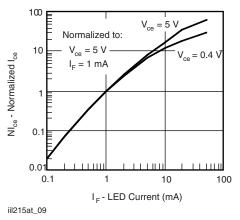
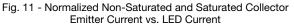




Fig. 10 - Normalized Non-Saturated and Saturated CTR_{CE} vs. LED Current

VO215AT, VO216AT, VO217AT

Vishay Semiconductors

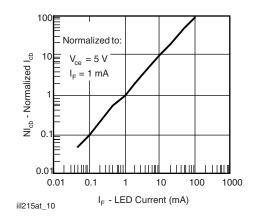


Fig. 12 - Normalized Collector Base Photocurrent vs. LED Current

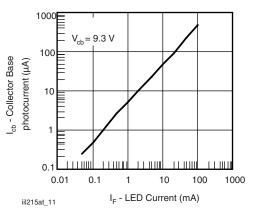


Fig. 13 - Collector Base Photocurrent vs. LED Current

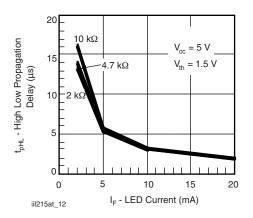
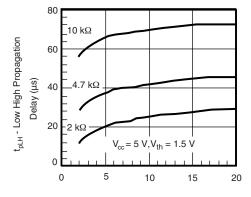
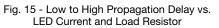
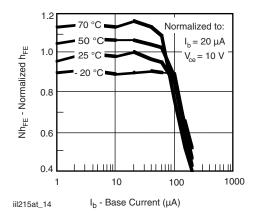


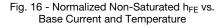
Fig. 14 - High to Low Propagation Delay vs. LED Current and Load Resistor


Rev. 1.1, 15-May-2023

Document Number: 81955


For technical questions, contact: optocoupler.answers@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000




Vishay Semiconductors

iil215at_13

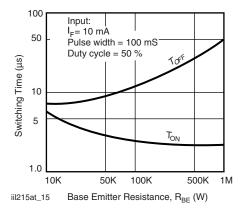
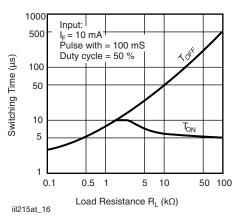
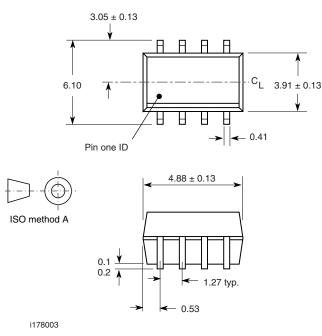
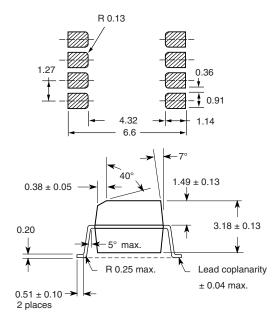


Fig. 17 - Typical Switching Characteristics vs. Base Resistance (Saturated Operation)




Fig. 18 - Typical Switching Times vs. Load Resistance


Vishay Semiconductors

www.vishay.com

VISHAY

PACKAGE DIMENSIONS in millimeters

PACKAGE MARKING (Example)

Fig. 19 - Example of VO215AT

Notes

- XXXX = LMC (lot marking code)
- Tape and reel suffix (T) is not part of the package marking

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jul-2024