COMPLIANT

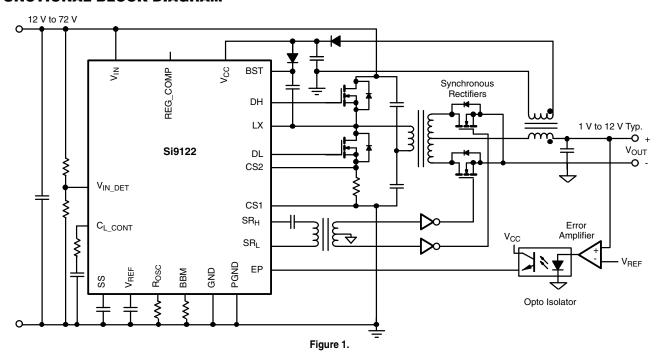
Vishay Siliconix

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

DESCRIPTION

Si9122 is a dedicated half-bridge IC ideally suited to fixed telecom applications where efficiency is required at low output voltages (e.g. < 3.3 V). Designed to operate within the fixed telecom voltage range of 33 to 72 V, the IC is capable of controlling and driving both the low and high-side switching devices of a half bridge circuit and also controlling the switching devices on the secondary side of the bridge. Due to the very low on-resistance of the secondary MOSFETs, a significant increase in the efficiency can be achieved as compared with conventional Schottky diodes. Control of the secondary devices is by means of a pulse transformer and a pair of inverters. Such a system has efficiencies well in excess of 90 % even for low output voltages. On-chip control of the dead time delays between the primary and secondary synchronous signals keep efficiencies high and prevent accidental destruction of the power transformer. An external resistor sets the switching frequency from 200 kHz to 625 kHz.

Si9122 has advanced current monitoring and control circuitry which allow the user to set the maximum current in the primary circuit. Such a feature acts as protection against output shorting and also provides constant current into large capacitive loads during start-up or when paralleling power supplies. Current sensing is by means of a sense resistor on the low-side primary device.


FEATURES

- 12 V to 72 V input voltage range
- Integrated half-bridge primary drivers (1 A drive capability)
- Secondary synchronous signals with programmable deadtime delay
- · Voltage mode control
- Voltage feedforward compensation
- High voltage pre-regulator operates during start-up
- Current sensing on low-side primary device
- · Frequency foldback eliminates constant current tail
- Advanced maximum current control during start-up and shorted load
- · Low input voltage detection
- · Programmable soft-start function
- · Over temperature protections

APPLICATIONS

- Network cards
- · Power supply modules

FUNCTIONAL BLOCK DIAGRAM

Document Number: 71815 S-80038-Rev. J, 14-Jan-08

TECHNICAL DESCRIPTION

Si9122 is a voltage mode controller for the half-bridge topology. With 100 V depletion mode MOSFET capability, the Si9122 is capable of powering directly from the high voltage bus to V_{CC} through an external PNP pass transistor, or may be powered through an external regulator directly through the V_{CC} pin. With PWM control, Si9122 provides peak efficiency throughout the entire line and load range. In order to simplify the traditional secondary synchronous rectification, Si9122 provides intelligent gate drive signals to control the secondary MOSFETs. With independent gate drive signals from the controller, transformer design is no longer limited by the gate to a source rating of the MOSFETs. Si9122 provides constant V_{GS} voltage, independent of line voltage to minimize the gate charge loss as well as conduction loss. A break-before-make function is included to

prevent shoot through current or transformer shorting. Adjustable Break-Before-Make time is incorporated into the IC and is programmable by an external resistor value.

Si9122 is packaged in TSSOP-20 and MLP65-20 packages. Both TSSOP-20 and MLP65-20 packages are available in lead (Pb)-free option. In order to satisfy the stringent ambient temperature requirements, Si9122 is rated to handle the industrial temperature range of - 40 °C to 85 °C. When a situation arises which results in a rapid increase in primary (or secondary current) such as output shorted or start-up with a large output capacitor, control of the PWM generator is handed over to the current loop. Monitoring of the load current is by means of a sense resistor on the primary low-side switch.

DETAILED BLOCK DIAGRAM

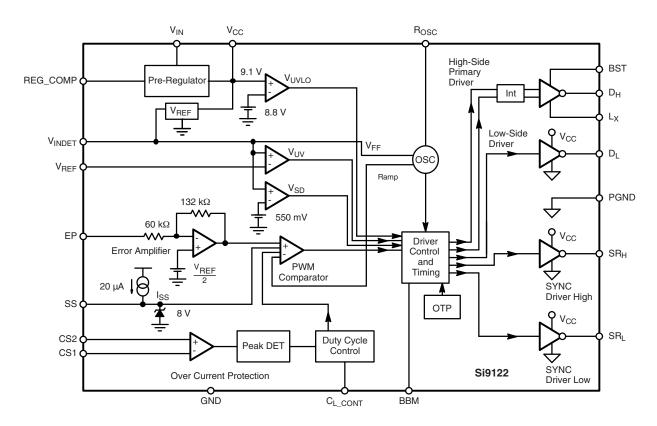


Figure 2.

ABSOLUTE MAXIMUM R	ATINGS All voltages referenced to	GND = 0 V	
Parameter	Limit	Unit	
V _{IN} (Continuous)	75		
V _{IN} (100 ms)		100	
V _{CC}		14.5	
V	Continuous	90	
V_{BST}	100 ms	115	
V_{LX}	75	V	
V _{BST} - V _{LX}		15	
V _{REF} , R _{OSC}		- 0.3 to V _{CC} + 0.3	
Logic Inputs		- 0.3 to V _{CC} + 0.3	
Analog Inputs		- 0.3 to V _{CC} + 0.3	
HV Pre-Regulator Input Current (Con	tinuous)	5	mA
Storage Temperature		- 65 to 150	°C
Operating Junction Temperature		150	
Power Dissipation ^a TSSOP-20 MLP65-20		850 2500	mW
Thermal Impedance (Θ_{JA})	TSSOP-20 ^b MLP65-20 ^c	75 38	°C/W

Notes:

- a. Device Mounted on JEDEC compliant 1S2P test board.
- b. Derate 14 mW/°C above 25 °C.
- c. Derate 26 mW/°C above 25 °C.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE All voltages referenced to GND = 0 V					
Parameter	Limit	Unit			
V _{IN}	12 to 72	V			
C _{VIN1} C _{VIN2}	100 μF/ESR ≤ 100 mΩ, 0.1 μF				
V _{CC} Operating	10 to 13.2	V			
CV _{CC}	4.7	μF			
fosc	200 to 600	kHz			
R _{OSC}	24 to 72				
R _{BBM}	22 to 50	kΩ			
C _{BBM} ^h	> 680	pF			
C _{SS}	4.7	nF			
C _{REF}	0.1				
C _{BOOST}	0.1	μF			
C _{LOAD}	150				
Analog Inputs	0 V to V _{CC} - 2 V	V			
Digital Inputs	0 V to V _{CC}	V			
Reference Voltage Output Current	0 to 2.5	mA			

Si9122 Vishay Siliconix

		Test Conditions Unless Otherwise Sp f _{NOM} = 500 kHz, V _{IN} =	Limits - 40 to 85 °C				
Parameter	Symbol	$V_{\text{INDET}} = 7.2 \text{ V}; 10 \text{ V} \le V_{\text{C}}$	Min. ^b	Typ. ^c Max. ^b		Unit	
Reference (3.3 V)		INDET			- 7	1	
Output Voltage	V _{REF}	V _{CC} = 12 V, 25 °C Load	3.2	3.3	3.4	V	
Short Circuit Current	I _{SREF}	V _{REF} = 0 V				- 50	mA
Load Regulation	dVr/dir	I _{REF} = 0 to - 2.5 m	nA		- 30	- 75	mV
Power Supply Rejection	PSRR	at 100 Hz			60		dB
Oscillator					L		
Accuracy (1 % R _{OSC})		$R_{OSC} = 30 \text{ k}\Omega, f_{NOM} = 5$	500 kHz	- 20		20	%
Max Frequency ⁱ	F _{MAX}	$R_{OSC} = 22.6 \text{ k}\Omega$	2	500	625	750	
Foldback Frequency ^d	F _{FOBK}	$f_{NOM} = 500 \text{ kHz}, V_{CS2} - V_{CS}$	_{S1} > 150 mV		100		kHz
Error Amplifier	TOBK	140W 7 002 00	<u> </u>		1.00		
Input Bias Current	I _{BIAS}	V _{EP} = 0 V		- 40		- 15	μΑ
Gain	A _V				- 2.2		V/V
Bandwidth	BW				5		MHz
Power Supply Rejection	PSRR	at 100 Hz			60		dB
Slew Rate	SR				0.5		V/µs
Current Sense Amplifier					L		
Input Voltage CM Range	V _{CM}	V _{CS1} - GND, V _{CS2} -	GND		± 150		mV
Input Amplifier Gain	A _{VOL}				17.5		dB
Input Amplifier Bandwidth	BW				5		MHz
Input Amplifier Offset Voltage	V _{OS}				± 5		mV
		$dV_{CS} = 0$		120			
CL_CONT Current	I _{CL CONT}	dV _{CS} = 100 mV		0		- μΑ	
		dV _{CS} = 170 mV		> 2		mA	
Lower Current Limit Threshold	V _{TLCL}	$I_{PD} = I_{PU} - I_{CL_CONT}$ See Figure 6	_T = 0		100		
Upper Current Limit Threshold	V _{THCL}	I _{PD} > 2 mA			150		mV
Hysteresis		I _{PU} < 500 μA			- 50		
CL_CONT Clamp Level	C _{L_CONT(min)}	I _{PU} = 500 μA		0.6		1.5	٧
PWM Operation	(/	-				Į	
	D _{MAX}	$f_{OSC} = 500 \text{ kHz}$ $V_{EP} = 0 \text{ V}$ $V_{FP} = 1.75$	V _{EP} = 0 V	90	92	95	
Duty Cycle ^e			V _{EP} = 1.75 V		< 15		%
, ,	D _{MIN}	V _{CS2} - V _{CS1} > 150 mV			3		1
Pre-Regulator							l
Input Voltage	+ V _{IN}	I _{IN} = 10 μA				72	V
Input Leakage Current	I _{LKG}	$V_{IN} = 72 \text{ V}, V_{CC} > V_{REG}$				10	
D 11 D' C :	I _{REG1}	V _{IN} = 72 V, V _{INDET} <	: V _{SD}		86	200	μΑ
Regulator Bias Current	I _{REG2}	V _{IN} = 72 V, V _{INDET} >			8	14	mA
	I _{SOURCE}			- 29	- 19	- 9	_
Regulator_Comp	I _{SINK}	V _{CC} = 12 V		50	82	110	μΑ
Pre-Regulator Drive Capacility	I _{START}			20		 	mA

Pre-Regulator Variable Var			Test Conditions Unless Otherwise Specified		_	Limits - 40 to 85 °C		
Pre-Regulator Vac Pre-Regulator Turn Off Vac Pre-Regulator Vac P					h		h	
Variety Va		•		V _{CC} ≤ 13.2 V	Min. ⁵	Typ.	Max. ⁵	Unit
Voc Pre-Regulator Turn Off Threshold Voltage VREG1 VINDET > VREP TA = 25 °C 8.5 9.1 9.7 Undervoltage Lockout VuvLo Voc Rising TA = 25 °C 8.5 9.1 9.2 Undervoltage Lockout VuvLo Hysteresis9 VuvLo Hysteresis	Pre-Regulator	Т			7.4	0.1	10.4	l
Threshold Voltage		V _{REG1}	$V_{INDET} > V_{REF}$	T ₄ = 25 °C				
Volto		Vprog	VINDET = 0		0.0		0.7	
Undervoltage Lockout		*REG2	*INDET = 0	•	7 15		9.8	V
V _{UVLO} Hysteresis ⁹ V _{UV} Start-Up Condition 12 20 28 µµ Soft-Start Current Output I _{SS} Start-Up Condition 7.35 8.05 8.85 V Soft-Start Current Coupled on Voltages V _{UNDET} Shutdown FN V _{SD} V _{NDET} Filsing 350 550 720 m² V _{NDET} Hysteresis V _{UV} V _{NDET} Filsing 3.13 3.3 3.46 V V _{UV} Hysteresis V _{UV} E Filsing 3.13 3.3 3.46 V V _{UV} Hysteresis V _{UV} E Filsing 3.13 3.3 3.46 V V _{UV} Hysteresis V _{UV} E Filsing 3.13 3.3 3.46 V V _{UV} Hysteresis V _{UV} E Filsing 3.13 3.3 3.46 V V _{UV} E T Experition Filsing 3.13 3.3 3.46 V V D.23 0.3 0.3 0.35	Undervoltage Lockout	V _{UVLO}	V _{CC} Rising	T _Δ = 25 °C				
Soft-Start Current Output	V _{untra} Hysteresis ^g	VIIVIOHVS						
Soft-Start Current Output		- OVLOH13				0.0		
Soft-Start Completion Voltage V_SB_COMP Normal Operation 7.35 8.05 8.85 V_Shutdown V_INDET Shutdown FN V_SD V_INDET Rising 350 550 720 m² Normal Cyber V_INDET Shutdown FN V_SD V_INDET Rising 350 550 720 m² Normal Cyber V_INDET Shutdown FN V_SD V_INDET Rising 3.13 3.3 3.46 V_INDET V_INDET V_IN Under Voltage V_UV V_INDET Rising 3.13 3.3 3.46 V_INDET		loo	Start-Lin Con	dition	12	20	28	11Δ
Shutdown V NDET Shutdown FN								
V _{INDET} Shutdown FN V _{SD} V _{INDET} Rising 350 550 720 mt V _{INDET} Hysteresis V _{INDET} Input Threshold Voltages V _{INDET} Input Threshold Voltage V _{VV} V _{INDET} Rising 3.13 3.3 3.46 V _V V _{INDET} Rising 3.13 3.3 3.46 V _V V _{INDET} Rising 3.13 3.3 3.46 V V _{INDET} Rising 3.13 3.3 3.46 V V V _{INDET} Rising 3.13 3.3 3.46 V V V _{INDET} Silsing 3.13 3.3 3.46 V V VINDET Silsing 3.13 3.3 3.46 V V V D 0.23 0.35 0.35 V V D 0.23 0.35 0.35 V C 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.25 0.22 0.22 0.22 0.22 0.22 0.22 0.22		- 55_COMP	Normai Oper	u	7.00	3.03	0.00	
V _{INDET} Hysteresis V _{INDET} Input Threshold Voltages V _{INDET} - V _{IN} Under Voltage V _{UV} V _{INDET} Rising 3.13 3.3 3.46 V V _{IV} Hysteresis V _{INDET} 0.23 0.3 0.35 V Over Temperature Protection Activating Temperature T _J Increasing 160 20 20 20 20 20 20 20 20 20 20 3.35 V 20 20 20 3.33 3.46 V 20 20 20 3.03 0.35 V 20		V _{SD}	V _{INDET} Ris	ing	350	550	720	
VindeT Input Threshold Voltages V _{INDET} - V _{IN} Under Voltage V _{UV} V _{INDET} Rising 3.13 3.3 3.46 V V _{IV} Hysteresis V _{INDET} 0.23 0.3 0.35 V Over Temperature Protection Activating Temperature T _J Increasing 160	***==*	92				200		mV
Vinder - Vinder Voltage Vinder Voltage Vinder Voltage Vinder Voltage Vinder Voltage Vinder Vinde		es						
V _{IV} Hysteresis V _{INDET} 0.23 0.3 0.35 Over Temperature Protection Activating Temperature T _J Increasing 160 -°C De-Activating Temperature T _J Decreasing 160 -°C Converter Supply Current (V _{CC}) Shutdown I _{DC1} Shutdown, V _{INDET} = 0 V 50 350 µ/ Switching Disabled I _{CC2} V _{INDET} > V _{REF} f _{NOM} = 500 kHz 5 10 15 m/ Switching wio Load I _{CC3} V _{INDET} > V _{REF} f _{NOM} = 500 kHz 5 10 15 m/ Switching with C _{LOAD} I _{CC4} V _{CC} = 12 V, C _{DH} = C _{DL} = 3 nF 21 21 m/ Switching with Voltage V _{OH} Sourcing 10 mA V _{BST} - 0.3 2 15 m/ Output High Voltage V _{OH} Sourcing 10 mA V _{BST} - 0.3 V _{LX} + 0.3 V _{LX} + 0.3 V Boost Current I _{BST} V _{LX} = 72 V, V _{BST} = V _{LX} + V _{CC} 1.3 1.9 2.7 1.2 L _X Current I _{LX} V _{LX} = 72 V, V _{BST} = V _{LX} + V _{CC} <td></td> <td></td> <td colspan="2">VINDET Rising</td> <td>3.13</td> <td>3.3</td> <td>3.46</td> <td></td>			VINDET Rising		3.13	3.3	3.46	
Over Temperature Protection Activating Temperature T _J Increasing 160 Coverage De-Activating Temperature T _J Decreasing 130 °C Converter Supply Current (V _{CC}) Shutdown V _{INDET} = 0 V 50 350 µ/ Shutdown, V _{INDET} < V _{REF} 4 8 12 Switching Disabled I _{CC2} V _{INDET} > V _{REF} f _{NOM} = 500 kHz 5 10 15 Switching win Load I _{CC3} V _{INDET} > V _{REF} f _{NOM} = 500 kHz 5 10 15 Switching with C _{LOAD} I _{CC4} V _{CC} = 12 V, C _{DH} = C _{DL} = 3 nF 21 21 Switching with C _{LOAD} I _{CC4} V _{CC} = 12 V, C _{DH} = C _{DL} = 3 nF 21 21 Output High Voltage V _{OH} Sourcing 10 mA V _{BST} - 0.3 V Output Low Voltage V _{OL} Sinking 10 mA V _{LX} + 0.3 V Peak Output Sink I _{SINK} V _{LX} = 72 V, V _{BST} = V _{LX} + V _{CC} -1.3 -0.7 -0.4 Peak Output S				0.23	0.3	0.35	V	
Activating Temperature T_J Increasing 160 Po-Activating Temperature T_J Decreasing 130 Po-Activating Decreasing Decr	<u> </u>	1	INDET					
De-Activating Temperature	•		T _{.I} Increasi	ng		160		
Converter Supply Current (V _{CC}) Shutdown I _{CC1} Shutdown, V _{INDET} = 0 V 50 350 µ/S Switching Disabled I _{CC2} V _{INDET} < V _{REF} 4 8 12 Switching w/o Load I _{CC3} V _{INDET} > V _{REF} f _{NOM} = 500 kHz 5 10 15 M Switching with C _{LOAD} I _{CC4} V _{CC} = 12 V, C _{DH} = C _{DL} = 3 nF C _{SRH} = C _{SRL} = 0.3 nF 21 M Switching with C _{LOAD} V _{CC} = 12 V, C _{DH} = C _{DL} = 3 nF C _{SRH} = C _{SRL} = 0.3 nF C _{SRH} = C _{SRL} = 0.3 nF C _{SRH} = C _{SRL} = 0.3 nF V _{LX} + 0.3 V _{LX} = 72 V, V _{SST} = V _{LX} + V _{CC} 1.3 1.9 2.7 M V _{LX} + 0.3 V _{LX} = 72 V, V _{SST} = V _{LX} + V _{CC} 1.3 1.9 2.7 M V _{LX} = 72 V, V _{SST} = V _{LX} + V _{CC} 1.3 1.9 2.7 M V _{LX} = 72 V, V _{SST} = V _{LX} + V _{CC} 1.3 1.9 2.7 M V _{LX} = 72 V, V _{SST} = V _{LX} + V _{CC} 1.3 1.9 2.7 1.0 0.75 1.0 M V _{LX} = 72 V, V _{SST} = V _{LX} + V _{CC} 1.3 0.7 0.4 M V _{LX} = 72 V, V _{SST} = V _{LX} + V _{CC} 1.3 0.7 0.4 M V _{LX} = 72 V, V _{SST} = V _{LX} + V _{CC} 0.75 1.0 M V _{CC} = 10 V 0.75 1.0 M V _{CC}						130		°C
Shutdown		5)		-				
Switching Disabled I_CC2			Shutdown, V _{INDET} = 0 V		50		350	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Switching Disabled				4	8	12	•
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.	V _{INDET} > V _{REF,} f _{NOM} = 500 kHz		5	10	15	
Output High Voltage VOH Sourcing 10 mA VBST - 0.3 VOLX + 0.3 Output Low Voltage VOL Sinking 10 mA VLX + 0.3 VLX + 0.3 Boost Current IBST VLX = 72 V, VBST = VLX + VCC 1.3 1.9 2.7 LX Current ILX VLX = 72 V, VBST = VLX + VCC -1.3 -0.7 -0.4 Peak Output Source ISOURCE VCC = 10 V 0.75 1.0 -0.75 Peak Output Sink ISINK CDL = 3 nF 35 ns Fall Time tf CDL = 3 nF 35 No Output MOSFET DL Driver (Low-Side) Output High Voltage VOH Sourcing 10 mA VCC - 0.3 V Output Low Voltage VOL Sinking 10 mA 0.3 V Peak Output Source ISOURCE VCC = 10 V -1.0 -0.75 A Rise Time tf CDH = 3 nF 35 N -1.0 -0.75 A			V _{CC} = 12 V, C _{DH} =		21		- mA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output MOSFET DH Driver (Hig	gh-Side)			_		L	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output High Voltage	V _{OH}	Sourcing 10	mA	V _{BST} - 0.3			.,
L _X Current I _{LX} V _{LX} = 72 V, V _{BST} = V _{LX} + V _{CC} -1.3 -0.7 -0.4 m/ Peak Output Source I _{SOURCE} V _{CC} = 10 V -1.0 -0.75 A Peak Output Sink I _{SINK} V _{CC} = 10 V 0.75 1.0 A Rise Time t _f C _{DL} = 3 nF 35 ns ns Output MOSFET DL Driver (Low-Side) Output High Voltage V _{OH} Sourcing 10 mA V _{CC} - 0.3 V Output Low Voltage V _{OL} Sinking 10 mA 0.3 V Peak Output Source I _{SOURCE} V _{CC} = 10 V -1.0 -0.75 A Peak Output Sink I _{SINK} C _{DH} = 3 nF 35 ns ns	Output Low Voltage		Sinking 10	mA			$V_{LX} + 0.3$	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Boost Current	I _{BST}	V _{LX} = 72 V, V _{BST} =	V _{LX} + V _{CC}	1.3	1.9	2.7	^
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L _X Current		V _{LX} = 72 V, V _{BST} =	V _{LX} + V _{CC}	- 1.3	- 0.7	- 0.4	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Peak Output Source	+ .	V 10	.,		- 1.0	- 0.75	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Peak Output Sink	I _{SINK}	V _{CC} = 10	V	0.75	1.0		А
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time		0 0 0			35		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time		$C_{DL} = 3 \text{ nF}$			35		ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output MOSFET DL Driver (Lo	w-Side)			_		<u>I</u>	<u>I</u>
Output Low Voltage V_{OL} Sinking 10 mA 0.3 Peak Output Source I_{SOURCE} $V_{CC} = 10 \text{ V}$ -1.0 -0.75 Peak Output Sink I_{SINK} 0.75 1.0 Rise Time $I_{CDH} = 3 \text{ nF}$ 35			Sourcing 10	mA	V _{CC} - 0.3			.,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Low Voltage		Sinking 10	mA			0.3	V
Peak Output Sink I_{SINK} $V_{CC} = 10 \text{ V}$ $0.75 1.0$ A Rise Time t_r $C_{DH} = 3 \text{ nF}$	<u> </u>	1 .	<u>-</u>			- 1.0	- 0.75	_
Rise Time			$V_{CC} = 10$	V	0.75	1.0		Α
C _{DH} = 3 nF	·	- t	<u> </u>			35		
		t _f	C _{DH} = 3 n	F				ns

SPECIFICATIONS ^a							
		Test Conditions Unless Otherwise Specified	Limits - 40 to 85 °C				
Parameter	Symbol	$f_{NOM} = 500 \text{ kHz}, V_{IN} = 72 \text{ V}$ $V_{INDET} = 7.2 \text{ V}; 10 \text{ V} \le V_{CC} \le 13.2 \text{ V}$	Min. ^b	Typ. ^c	Max. ^b	Unit	
Synchronous Rectifier (SRH,	SRL) Drivers						
Output High Voltage	V _{OH}	Sourcing 10 mA	V _{CC} - 0.4			V	
Output Low Voltage	V _{OL}	Sinking 10 mA			0.4	V	
	t _{BBM1}	$T_{\Delta} = 25$ °C, $R_{RRM} = 33 \text{ k}\Omega$, See Figure 3		55		- ns	
5 1 5 6 11 5 f	t _{BBM2}	$I_A = 25$ C, $n_{BBM} = 33$ ksz, See Figure 3		40			
Break-Before-Make Time [†]	t _{BBM3}	T _A = 25 °C, R _{BBM} = 33 kΩ, L _X = 72 V		35			
	t _{BBM4}	$I_A = 25$ C, $n_{BBM} = 35$ K2, $L_X = 72$ V		55		1	
Peak Output Source	I _{SOURCE}	V _{CC} = 10 V		- 100			
Peak Output Sink	I _{SINK}	v _{CC} = 10 v		100		mA	
Rise Time	t _r	C _{SBH} = C _{SBI} = 0.3 nF		35			
Fall Time	t _f	OSRH = OSRL = 0.3 III		35		ns	
Voltage Mode					•		
Error Amplifior	t _{d1DH}	Input to High-Side Switch Off		< 200		no	
Error Amplifier	t _{d2DL}	Input to Low-Side Switch Off		< 200		ns	
Current Mode					•		
Current Amplifier	t _{d3DH}	H Input to High-Side Switch Off <		< 200		T	
Ourient Ampliner	t _{d4DL}	Input to Low-Side Switch Off		< 200		ns	

Notes:

- a. Refer to PROCESS OPTION FLOWCHART for additional information.
- b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum (- 40 °C to 85 °C).
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. F_{MIN} when V_{CL_CONT} at clamp level. Typical foldback frequency change + 20 %, 30 % over temperature.
- e. Measured on SRL or SRH outputs.
- f. See figure 3 for Break-Before-Make time definition.
- g. $V_{\mbox{\scriptsize UVLO}}$ tracks $V_{\mbox{\scriptsize REG1}}$ by a diode drop.
- h. C_{BBM} may be required to reduce noise into BBM pin for non-optimum layout.
- i. Guaranteed by design and characterization, not tested in production.

TIMING DIAGRAM FOR MOS DRIVERS

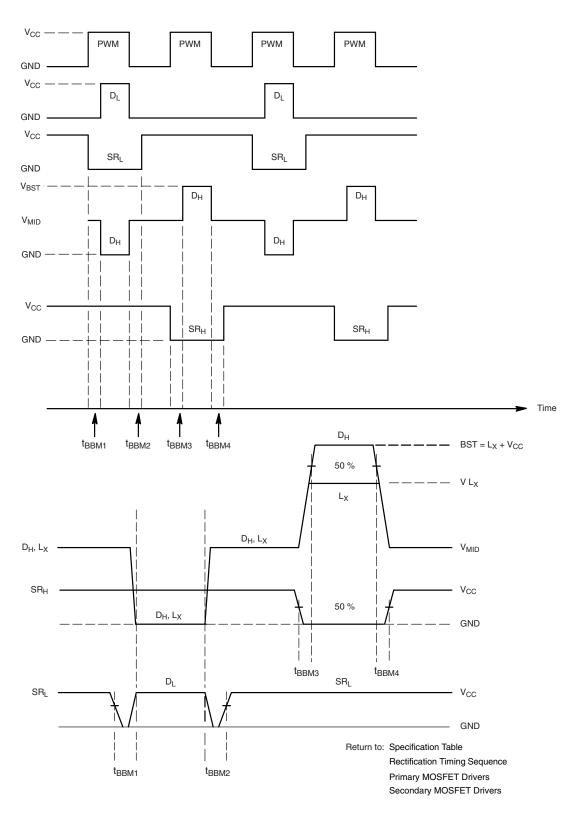
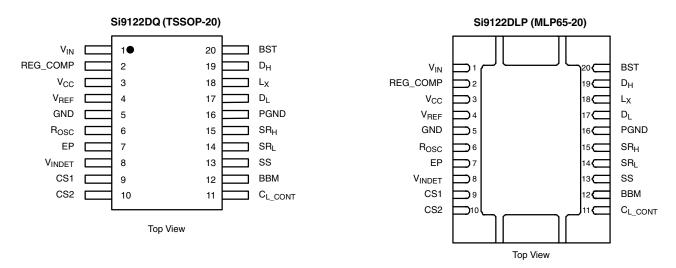



Figure 3.

PIN CONFIGURATION

ORDERING INFORMATION						
Lead (Pb)-free Part Number	Temperature Range	Package				
Si9122DQ-T1-E3	- 40 °C to 85 °C	TSSOP-20				
Si9122DLP-T1-E3	- 40 C to 65 C	MLP65-20				

Eval Kit	Temperature Range	Board Type
Si9122DB Issue 3	- 10 °C to 70 °C	Surface Mount and Thru-Hole

PIN DESCRIPTION					
Pin Number	Name	Function			
1	V_{IN}	Input supply voltage for the start-up circuit			
2	REG_COMP	Control signal for an external pass transistor			
3	V _{CC}	Supply voltage for internal circuitry			
4	V _{REF}	3.3 V reference, decoupled with 1 μF capacitor			
5	GND	Ground			
6	R _{OSC}	External resistor connection to oscillator			
7	EP	Voltage control input			
8	V _{INDET}	V_{IN} under voltage detect and shutdown function input. Shuts down or disables switching when V_{INDET}			
· ·	INDET	falls below preset threshold voltages and provides the feed forward voltage.			
9	CS1	Current limit amplifier negative input			
10	CS2	Current limit amplifier positive input			
11	C_{L_CONT}	Current limit compensation			
12	BBM	Programmable break-before-make time connection to an external resistor to set time delay			
13	SS	Soft-start control - external capacitor connection			
14	SR _L	Signal transformer drive, sequenced with the primary side			
15	SR _H	Signal transformer drive, sequenced with the primary side			
16	PGND	Power ground			
17	D _L	Low-side gate drive signal - primary			
18	L _X	High-side source and transformer connection node			
19	D _H	High-side gate drive signal - primary			
20	BST	Bootstrap voltage to drive the high-side N-Channel MOSFET switch			

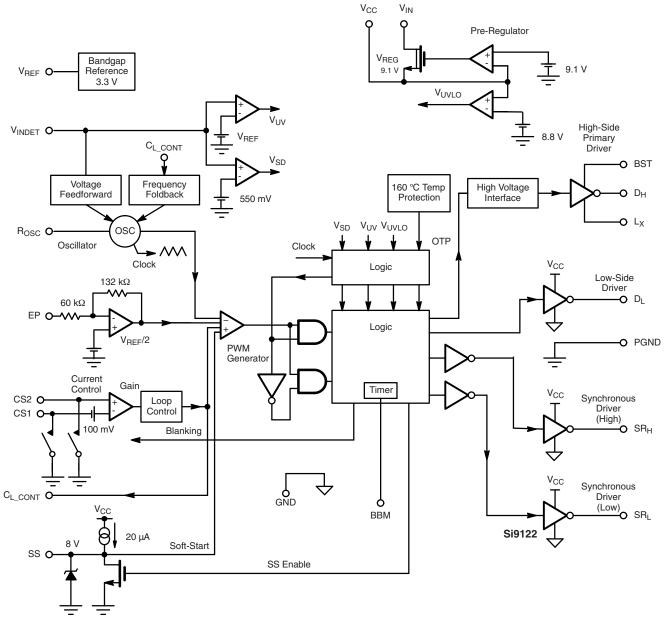


Figure 4. Detailed Functional Block

DETAILED OPERATION

Start-Up

When V_{INEXT} rises above 0 V, the internal pre-regulator begins to charge up the V_{CC} capacitor. Current into the external V_{CC} capacitor is limited to typically 40 mA by the internal DMOS device. When Vcc exceeds the UVLO voltage of 8.8 V a soft-start cycle of the switch mode supply is initiated. The V_{CC} supply continues to be charged by the pre-regulator until V_{CC} equals V_{REG} . During this period, between V_{UVLO} and V_{REG} , excessive load current will result in V_{CC} falling below V_{UVLO} and stopping switch mode operation. This situation is avoided by the hysteresis between V_{REG} and V_{UVLO} and correct sizing of the V_{CC}

capacitor, bootstrap capacitor and the soft-start capacitor. The value of the V_{CC} capacitor should therefore be chosen to be capable of maintaining switch mode operation until the V_{CC} can be supplied from the external circuit (e.g via a power transformer winding and zener regulator). Feedback from the output of the switch mode supply charges V_{CC} above V_{REG} and fully disconnects the pre-regulator, isolating V_{CC} from $V_{IN}.\ V_{CC}$ is then maintained above V_{REG} for the duration of switch mode operation. In the event of an over voltage condition on V_{CC} , an internal voltage clamp turns on at 14.5 V to shunt excessive current to GND.

Care needs to be taken if there is a delay prior to the external circuit feeding back to the V_{CC} supply. To prevent excessive power dissipation within the IC it is advisable to use an external PNP device. A pin has been incorporated on the IC, (REG_COMP) to provide compensation when employing the external device. In this case the V_{IN} pin is connected to the base of the PNP device and controls the current, while the REG_COMP pin determines the frequency compensation of the circuit. The value of the REG_COMP capacitor cannot be too big, otherwise it will slow down the response of the pre-regulator in the case that fault situations occur and pre-regulator needs to be turned on again. To understand

The soft-start circuit is designed for the dc-dc converter to start-up in an orderly manner and reduce component stress on the IC. This feature is programmable by selecting an external C_{SS} . An internal 20 μ A current source charges C_{SS} from 0 V to the final clamped voltage of 8 V. In the event of UVLO or shutdown, V_{SS} will be held low (< 1 V) disabling driver switching. To prevent oscillations, a longer soft-start time may be needed for high capacitive loads and high peak output current applications.

Reference

The reference voltage of Si9122 is set at 3.3 V. The reference voltage is de-coupled externally with 0.1 μ F capacitor. The V_{REF} voltage is 0 V in shutdown mode and has 50 mA source capability.

Voltage Mode PWM Operation

the operation please refer to Figure 5.

Under normal load conditions, the IC operates in voltage mode and generates a fixed frequency pulse width modulated signal to the drivers. Duty cycle is controlled over a wide range to maintain output voltage under line and load variation. Voltage feed forward is also included to take account of variations in supply voltage V_{IN} .

In the half-bridge topology requiring isolation between output and input, the reference voltage and error amplifier must be supplied externally, usually on the secondary side. The error information is thus passed to the power controller through an opto-coupling device. This information is inverted, hence 0 V represents the maximum duty cycle, whilst 2 V represents minimum duty cycle. The error information enters the IC via pin EP, and is passed to the PWM generator via an inverting amplifier. The relationship between Duty cycle and V_{EP} is shown in the Typical Characteristic Graph, Duty Cycle vs. V_{EP} 25 °C , page 12. Voltage feedforward is implemented by taking the attenuated V_{IN} signal at V_{INDET} and directly modulating the duty cycle. The relationship between Duty cycle and V_{INDET} is shown in the Typical Characteristic Graph, Duty Cycle vs. V_{INDET} , page 16.

At start-up, i.e., once V_{CC} is greater than V_{UVLO} , switching is initiated under soft-start control which increases primary switch on-times linearly from D_{MIN} to D_{MAX} over the soft-start period. Start-up from a V_{INDET} power down is also initiated under soft-start control.

Half-Bridge and Synchronous Rectification Timing Sequence

The PWM signal generated within the Si9122 controls the low and high-side bridge drivers on alternative cycles. A period of inactivity always results after initiation of the soft-start cycle until the soft-start voltage reaches approximately 1.2 V and PWM controlled switching begins. The first bridge driver to switch is always the low-side, D_L as this allows charging of the high-side boost capacitor.

The timing and coordination of the drives to the primary and secondary stages is very important and shown in Figure 3. It is essential to avoid the situation where both of the secondary MOSFETs are on when either the high or the lowside switch are active. In this situation the transformer would effectively be presented with a short across the output. To avoid this, a dedicated break-before-make circuit is included which will generate non overlapping waveforms for the primary and the secondary drive signals. This is achieved by a programmable timer which delays the switching on of the primary driver relative to the switching off of the related secondary and subsequently delays the switching on of the secondary relative to the switching off of the related primary. Typical variation in the t_{BBM3} and t_{BBM4} delay with L_X voltage is shown in graphs $t_{BBM3},\,t_{BBM4}$ and for R_{BBM} = 33 $k\Omega.$ This is due to a reduction in propagation delay through the highside driver path as the LX voltage increases and must be considered in setting the delay for the system level design. Variation of BBM time with R_{BBM} is shown in graph t_{BBM1} to t_{BBM4} vs. R_{BBM}.

Primary High- and Low-Side MOSFET Drivers

The drive voltage for the low-side MOSFET switch is provided directly from $V_{CC}.$ The high-side MOSFET however requires the gate voltage to be enhanced above $V_{IN}.$ This is achieved by bootstraping the V_{CC} voltage onto the L_X voltage (the high-side MOSFET source). In order to provide the bootstrapping an external diode and capacitor are required as shown on the application schematic. The capacitor will charge up after the low-side driver has turned on. The switch gate drive signals D_H and D_L are shown in Figure 3.

Secondary MOSFET Drivers

The secondary side MOSFETs are driven from the Si9122 via a center tapped pulse transformer and inverter drivers. The waveforms from the IC SRH and SRL are shown in Figure 3. Of importance is the relative voltage between SRH and SRL, i.e. that which is presented across the primary of the pulse transformer. When both potentials of SRL and SRH are equal then by the action of the inverting driver both secondary MOSFETs are left on.

Oscillator

The oscillator is designed to operate at a nominal frequency of 500 kHz. The 500 kHz operating frequency allows the converter to minimize the inductor and capacitor size, improving the power density of the converter. The oscillator and therefore the switching frequency is programmable by attaching a resistor to the $R_{\rm OSC}$ pin. Under overload

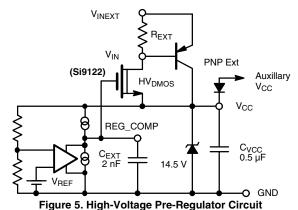
conditions the oscillator frequency is reduced by the current overload protection to enable a constant current to be maintained into a low impedance circuit.

Current Limit

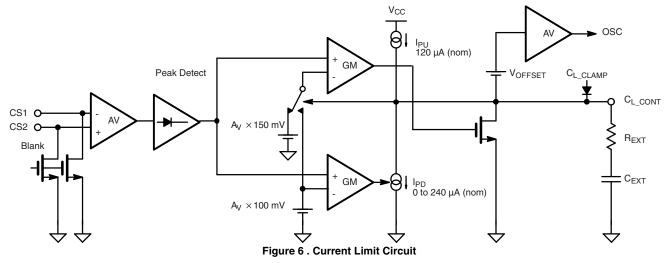
Current mode control providing constant current operation is achieved by monitoring the differential voltage V_{CS} between the CS1 and CS2 pins, which are connected to a current sense resistor on the primary low-side MOSFET. In the absence of an overcurrent condition, V_{CS} is less than lower current limit threshold V_{TLCL} (typical 100 mV); C_{L_CONT} is pulled up linearly via the 120 μA current source (I_{PU}) and both DL and DH switch at half the oscillator set frequency. When a moderate overcurrent condition occurs ($V_{TLCL} < V_{CS}$ < V_{THCL}), the C_{L_CONT} capacitor will be discharged at a rate that is proportional to V_{CS} - 100 mV by the I_{PD} current source. Both driver outputs are in frequency fold-back mode and the switching frequency becomes roughly 20 % of normal switching frequency. When a severe overcurrent condition occurs (V_{THCL} < V_{CS}), the NMOS discharges C_{L CONT} capacitor immediately at 2 mA rate and the $C_{L\ CONT}$ voltage will be clamped to 1.2 V disabling both DL and DH outputs.

Before V_{CS} reaches severe overcurrent condition, a lowering of the C_{L_CONT} voltage results in PWM control of the output drive being taken over by the current limit control loop through C_{L_CONT} . Current control initially reduces the switching duty cycle toward the minimum the chip can reach (D_{MIN}) . If this duty cycle reduction still cannot lower the load current, then the switching frequency will start to fold back to minimum 1/5 of the nominal frequency. This prevents the on-time of the primary drivers from being reduced to below 100 ns and avoids current tails. If $V_{CS} > V_{THCL}$, the switching will then stop.

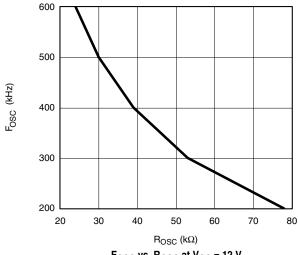
With constant current mode control and frequency foldback, protection of the MOSFET switches is increased. The converter reverts to voltage mode operation immediately when the primary current falls below the limit level, and C_{L_CONT} capacitor is charged up and clamped to 6.5 V. The soft-start function does not apply during current limit period, as this would constitute hiccup mode operation.

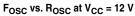

V_{IN} Voltage Monitor - V_{INDET}

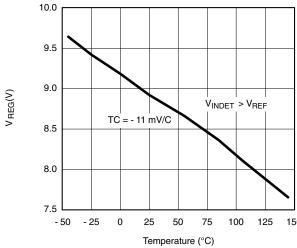
The chip provides a means of sensing the voltage of V_{IN} , and withholding operation of the output drivers until a minimum voltage of V_{REF} (3.3 V, 300 mV hysteresis), is achieved. This is achieved by choosing an appropriate resistive tap between the ground and V_{IN} , and comparing this voltage with the reference voltage. When the applied voltage is greater than V_{REF} , the output drivers are activated as normal. V_{INDET} also provides the input to the voltage feed forward function.

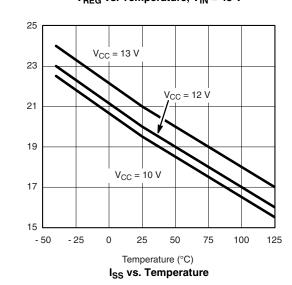

However, if the divided voltage applied to the V_{INDET} pin is greater than V_{CC} - 0.3 V, the high-side driver, D_H , will stop switching until the voltage drops below V_{CC} - 0.3 V. Thus, the resistive tap on the V_{IN} divider must be set to accommodate the normal V_{CC} operating voltage to avoid this condition. Alternatively, a zener clamp diode from V_{INDET} to GND may also be used.

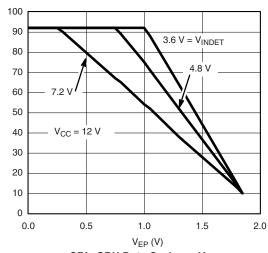
Shutdown Mode


If V_{INDET} is forced below the lower threshold, a minimum of 350 mV (V_{SD}), the device will enter SHUTDOWN mode. This powers down all unnecessary functions of the controller, ensures that the primary switches are off and results in a low level current demand from the V_{IN} or V_{CC} supplies.




rigure 5. riigii-voltage Fre-negulator Circuit


TYPICAL CHARACTERISTICS



 V_{REG} vs. Temperature, $V_{IN} = 48 \text{ V}$

3.300 3.295 3.290 V REF (V) 3.285 3.280 3.275 3.270 - 25 25 100 - 50 50 75 Temperature (°C)

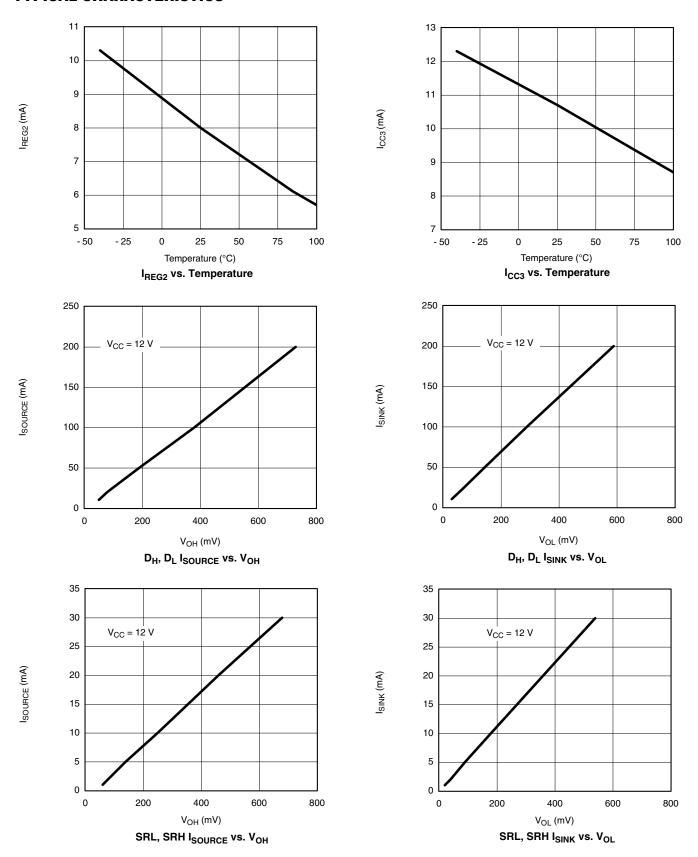
 V_{REF} vs. Temperature, V_{CC} = 12 V

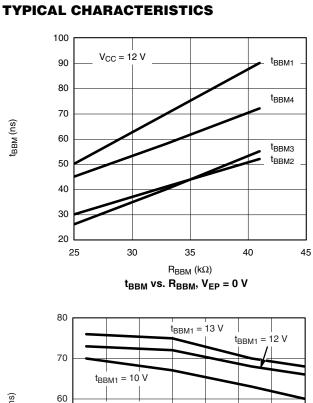
Duty Cycle (%)

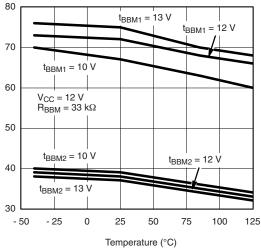
Vss (V)

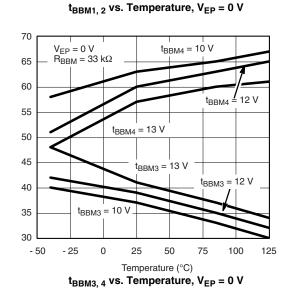
SRL, SRH Duty Cycle vs. V_{EP}

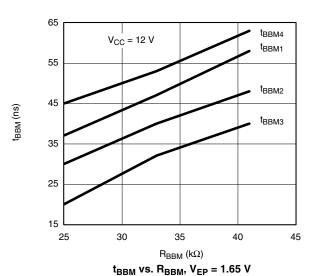
 V_{SS} vs. Temperature, V_{CC} = 12 V

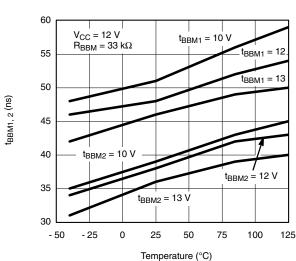

Iss1 (µA)

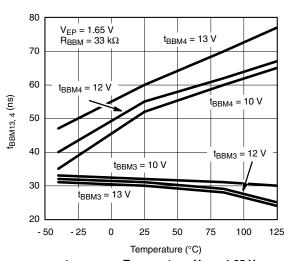






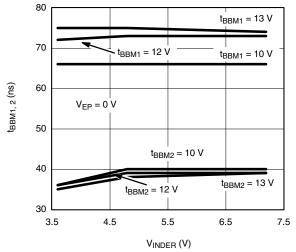

TYPICAL CHARACTERISTICS

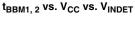


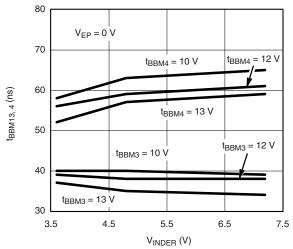


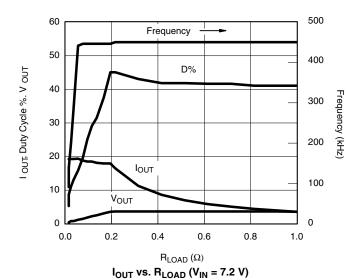
t_{BBM1, 2} vs. Temperature, V_{EP} = 1.65 V

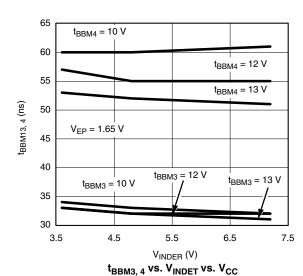
 $t_{BBM3, 4}$ vs. Temperature, $V_{EP} = 1.65 \text{ V}$

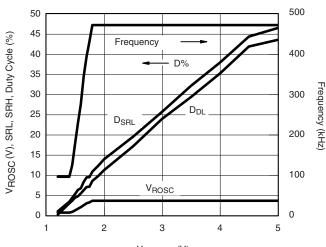

BBM13, 4 (ns)






TYPICAL CHARACTERISTICS




 $t_{\mbox{\footnotesize{BBM3}},\,4}$ vs. $V_{\mbox{\footnotesize{CC}}}$ vs. $V_{\mbox{\footnotesize{INDET}}}$

55 $t_{BBM1} = 13 \text{ V}$ 50 t_{BBM1} $t_{BBM1} = 10 \text{ V}$ t_{BBM1, 2} (ns) 45 $V_{EP} = 1.65 \text{ V}$ $t_{BBM2} = 12 \text{ V}$ 40 $t_{BBM2} = 13 \text{ V}$ $t_{BBM2} = 10 \text{ V}$ 35 3.5 4.5 5.5 6.5 7.5

 $\begin{matrix} V_{\text{INDER}}\left(V\right) \\ t_{\text{BBM1, 2}} \text{ vs. } V_{\text{INDET}} \text{ vs. } V_{\text{CC}} \end{matrix}$

V_{CLCONT} (V)

Current Sense Duty Cycle vs. V_{CLCONT}

V_{INDET} = 7.2 V 25 °C

VISHAY.

TYPICAL WAVEFORMS

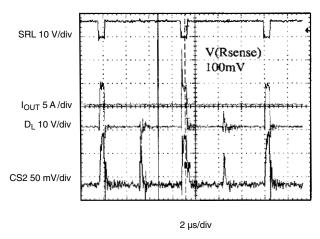


Figure 7. Foldback Mode, R_L = 0.02 Ω

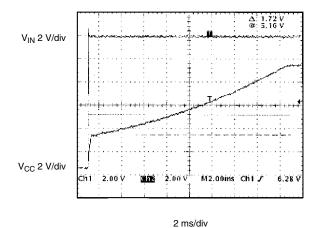


Figure 9. V_{CC} Ramp-Up

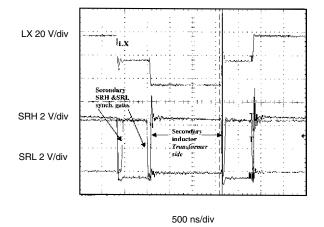


Figure 11. Effective BBM - Measured On Secondary

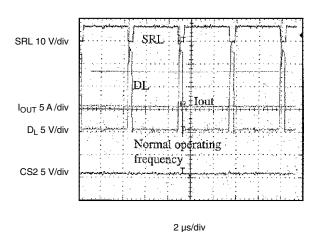


Figure 8. Normal Mode, R_L = 0.1 Ω

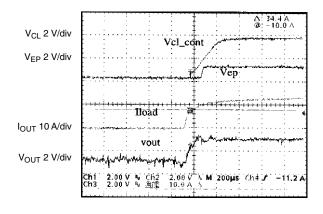


Figure 10. Overload Recovery - Minimum Overshoot

200 µs/div

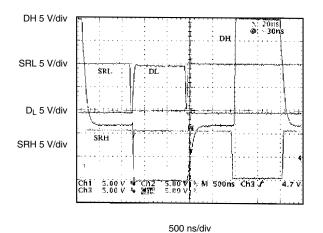
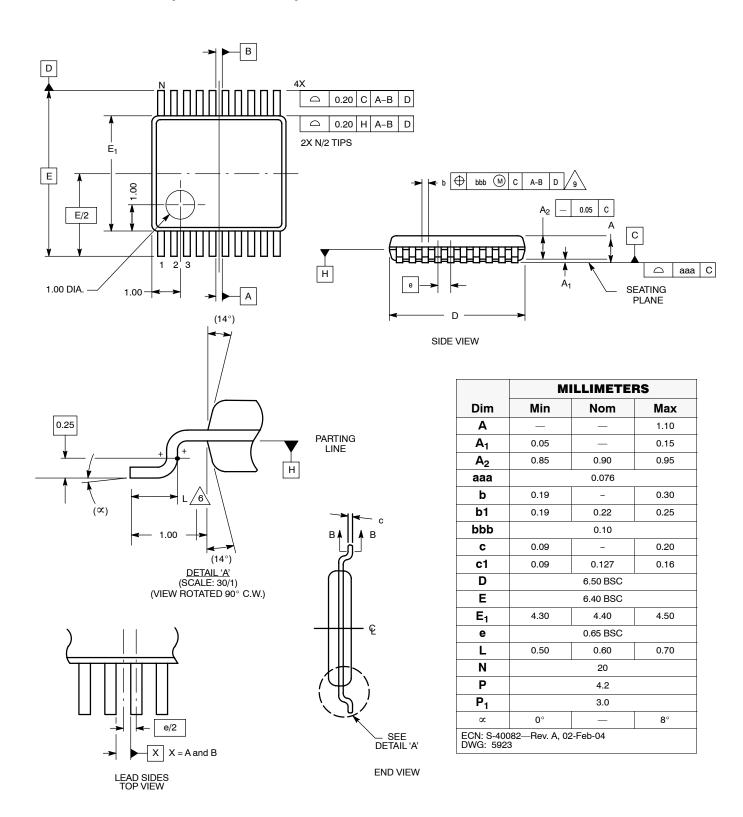
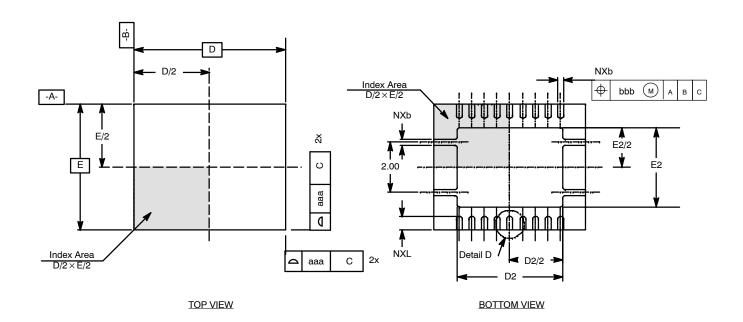
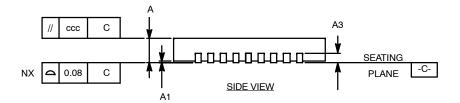



Figure 12. Drive Waveforms

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?71815.

TSSOP: 20-LEAD (POWER IC ONLY)




Document Number: 72818 28-Jan-04

www.vishay.com

PowerPAK® MLP65-18/20 (POWER IC ONLY)

Document Number: 73182 www.vishay.com 15-Oct-04

Package Information

Vishay Siliconix

PowerPAK MLP65-18/20 (POWER IC ONLY)

N = 18/20 PITCH: 0.5 mm, BODY SIZE: 6.00 x 5.00

	МІ	MILLIMETERS*			INCHES		
Dim	Min	Nom	Max	Min	Nom	Max	Notes
Α	0.80	0.90	1.00	0.031	0.035	0.039	1, 2
A1	0.00	0.02	0.05	0.000	0.001	0.002	1, 2
A2	0.00	0.65	1.00	0.000	0.003	0.004	1, 2
A3		0.20 REF	1		0.008 REF		
aaa	-	0.15	_	-	0.006	-	
b	0.18	0.25	0.30	0.007	0.010	0.012	8
bbb	-	0.10	_	-	0.004	-	
C'	-	0.225	_	-	0.009	-	4, 10
ccc	-	0.10	_	-	0.004	-	
D		6.00 BSC		0.236 BSC			1, 2
D2	4.00	4.15	4.25	0.157	1.63	0.167	1, 2
E		5.00 BSC		0.197 BSC			1, 2
E2	3.00	3.15	3.25	0.118	0.124	0.128	1, 2
е	_	0.50	_	-	0.020	-	
L	0.45	0.55	0.65	0.018	0.022	0.026	1, 2
N	18, 20		18, 20		1, 2		
ND(18)	9		9		1, 2		
NE(18)	0		0		1, 2		
ND(20)	10		10		1, 2		
NE(20)		0			0		1, 2

^{*} Use millimeters as the primary measurement.

ECN: S-41946-Rev. A, 18-Oct-04

NOTES:

- Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- All dimensions are in millimeters. All angels are in degrees.
- 3. N is the total number of terminals.
- The terminal #1 identifier and terminal numbering convention shall conform to JEDEC publication 95 SSP-022. Details of terminal #1 identifier are optional, but must be located within the zone indicated. A dot can be marked on the top side by pin 1 to indicate orientation.

 $\sqrt{5.}$ ND and NE refer to the number of terminals on the D and E side respectively.

- Depopulation is possible in a symmetrical fashion. NJR refers to NON JEDEC REGISTERED.
- Dimension "b" applies to metalized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip. If the terminal has optional radius on the other end of the terminal, the dimension "b" should not be measured in that radius area.
- Coplanarity applies to the exposed heat slug as well as the terminal.
- 10. The 45° chamfer dimension C' is located by pin 1 on the bottom side of the package.

Document Number: 73182 www.vishay.com 15-Oct-04

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.