Low Voltage Precision Adjustable Shunt Regulator

TLV431, NCV431, SCV431

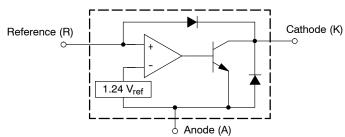
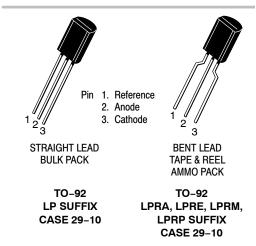
The TLV431A, B and C series are precision low voltage shunt regulators that are programmable over a wide voltage range of 1.24 V to 16 V. The TLV431A series features a guaranteed reference accuracy of $\pm 1.0\%$ at 25°C and $\pm 2.0\%$ over the entire industrial temperature range of -40°C to 85°C. The TLV431B series features higher reference accuracy of $\pm 0.5\%$ and $\pm 1.0\%$ respectively. For the TLV431C series, the accuracy is even higher. It is $\pm 0.2\%$ and $\pm 1.0\%$ respectively. These devices exhibit a sharp low current turn-on characteristic with a low dynamic impedance of 0.20 Ω over an operating current range of 100 μ A to 20 mA. This combination of features makes this series an excellent replacement for zener diodes in numerous applications circuits that require a precise reference voltage. When combined with an optocoupler, the TLV431A/B/C can be used as an error amplifier for controlling the feedback loop in isolated low output voltage (3.0 V to 3.3 V) switching power supplies. These devices are available in economical TO-92-3 and micro size TSOP-5 and SOT-23-3 packages.

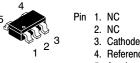
Features

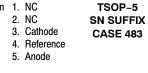
- Programmable Output Voltage Range of 1.24 V to 16 V
- Voltage Reference Tolerance ±1.0% for A Series, ±0.5% for B Series and ±0.2% for C Series
- Sharp Low Current Turn-On Characteristic
- Low Dynamic Output Impedance of 0.20Ω from $100 \mu A$ to 20 mA
- Wide Operating Current Range of 50 μA to 20 mA
- Micro Miniature TSOP-5, SOT-23-3 and TO-92-3 Packages
- NCV and SCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These are Pb-Free and Halide-Free Devices

Applications

- Low Output Voltage (3.0 V to 3.3 V) Switching Power Supply Error Amplifier
- Adjustable Voltage or Current Linear and Switching Power Supplies
- Voltage Monitoring
- Current Source and Sink Circuits
- Analog and Digital Circuits Requiring Precision References
- Low Voltage Zener Diode Replacements

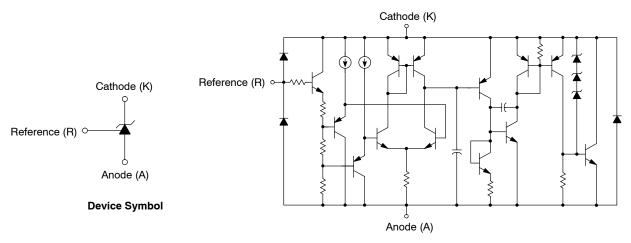




Figure 1. Representative Block Diagram



ON Semiconductor®

www.onsemi.com


Pin	2.	Reference Cathode Anode	SOT-23 SN1 SUFFIX CASE 318
	٥.	Alloue	CAGE 310

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 14 of this data sheet.

DEVICE MARKING INFORMATION AND PIN CONNECTIONS

See general marking information in the device marking section on page 13 of this data sheet.

The device contains 13 active transistors.

Figure 2. Representative Device Symbol and Schematic Diagram

MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted)

Rating		Symbol	Value	Unit
Cathode to Anode Voltage		V_{KA}	18	V
Cathode Current Range, Continuous		I _K	-20 to 25	mA
Reference Input Current Range, Continuous		I _{ref}	-0.05 to 10	mA
Thermal Characteristics LP Suffix Package, TO-92-3 Package Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case SN Suffix Package, TSOP-5 Package Thermal Resistance, Junction-to-Ambient SN1 Suffix Package, SOT-23-3 Package Thermal Resistance, Junction-to-Ambient		R _{θJA} R _{θJC} R _{θJA}	178 83 226 491	°C/W
Operating Junction Temperature		T _J	150	°C
Operating Ambient Temperature Range	TLV431 NCV431, SCV431	T _A	- 40 to 85 - 40 to 125	°C
Storage Temperature Range		T _{stg}	-65 to 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

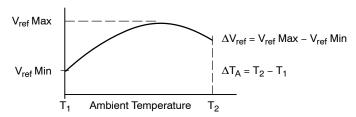
NOTE: This device series contains ESD protection and exceeds the following tests:

Human Body Model 2000 V per JEDEC JESD22-A114F, Machine Model Method 200 V per JEDEC JESD22-A115C,

Charged Device Method 1000 V per JEDEC JESD22-C101E. This device contains latch-up protection and exceeds ± 100 mA per JEDEC standard JESD78.

$$P_D = \frac{T_{J(max)} - T_A}{R_{\theta,JA}}$$

RECOMMENDED OPERATING CONDITIONS


Condition	Symbol	Min	Max	Unit
Cathode to Anode Voltage	V _{KA}	V _{ref}	16	V
Cathode Current	I _K	0.1	20	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

		TLV431A TLV431B		3				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Reference Voltage (Figure 3) $ (V_{KA} = V_{ref}, I_K = 10 \text{ mA}, T_A = 25^{\circ}\text{C}) $ $ (T_A = T_{low} \text{ to } T_{high}, \text{ Note 1}) $	V _{ref}	1.228 1.215	1.240	1.252 1.265	1.234 1.228	1.240 -	1.246 1.252	٧
Reference Input Voltage Deviation Over Temperature (Figure 3) $(V_{KA} = V_{ref}, I_{K} = 10 \text{ mA}, T_A = T_{low} \text{ to } T_{high}, \text{ Notes } 1, 2, 3)$	ΔV_{ref}	-	7.2	20	-	7.2	20	mV
Ration of Reference Input Voltage Change to Cathode Voltage Change (Figure 4) $(V_{KA} = V_{ref} \text{ to 16 V}, I_{K} = 10 \text{ mA})$	$\frac{\Delta V_{ref}}{\Delta V_{KA}}$	-	-0.6	-1.5	-	-0.6	-1.5	mV V
Reference Terminal Current (Figure 4) ($I_K = 10 \text{ mA}, R1 = 10 \text{ k}\Omega, R2 = \text{open}$)	I _{ref}	-	0.15	0.3	-	0.15	0.3	μΑ
Reference Input Current Deviation Over Temperature (Figure 4) (I _K = 10 mA, R1 = 10 k Ω , R2 = open, Notes 1, 2, 3)	ΔI_{ref}	-	0.04	0.08	-	0.04	0.08	μΑ
Minimum Cathode Current for Regulation (Figure 3)	I _{K(min})	-	30	80	-	30	80	μΑ
Off-State Cathode Current (Figure 5) $(V_{KA} = 6.0 \text{ V}, V_{ref} = 0)$ $(V_{KA} = 16 \text{ V}, V_{ref} = 0)$	I _{K(off)}	- -	0.01 0.012	0.04 0.05	- -	0.01 0.012	0.04 0.05	μА
Dynamic Impedance (Figure 3) $(V_{KA} = V_{ref}, I_K = 0.1 \text{ mA to } 20 \text{ mA, } f \le 1.0 \text{ kHz, Note 4})$	Z _{KA}	-	0.25	0.4	-	0.25	0.4	Ω

- 1. Ambient temperature range: $T_{low} = -40^{\circ}C$, $T_{high} = 85^{\circ}C$. 2. Guaranteed but not tested.
- 3. The deviation parameters ΔV_{ref} and ΔI_{ref} are defined as the difference between the maximum value and minimum value obtained over the full operating ambient temperature range that applied.

The average temperature coefficient of the reference input voltage, αV_{ref} is defined as:

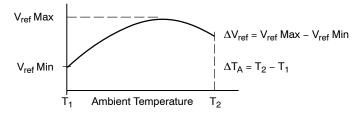
$$\alpha V_{ref} \left(\frac{ppm}{{}^{\circ}C} \right) = \frac{\left(\frac{(\Delta V_{ref})}{V_{ref} \left(T_{A} = 25 {}^{\circ}C \right)} \times 10^{6} \right)}{\Delta T_{A}}$$

αV_{ref} can be positive or negative depending on whether V_{ref} Min or V_{ref} Max occurs at the lower ambient temperature, refer to Figure 8. Example: $\Delta V_{ref} = 7.2 \text{ mV}$ and the slope is positive,

$$V_{ref}$$
 @ 25°C = 1.241 V ΔT_A = 125°C

$$\alpha V_{ref} \left(\frac{ppm}{{}^{\circ}C} \right) = \frac{0.0072}{1.241} \times 10^{6} = 46 \text{ ppm/}^{\circ}C$$

4. The dynamic impedance Z_{KA} is defined as:


$$|Z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$$

$$|Z_{KA}'| = |Z_{KA}| \times \left(1 + \frac{R1}{R2}\right)$$

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

		TLV431C			
Characteristic	Symbol	Min	Тур	Max	Unit
Reference Voltage (Figure 3) $ (V_{KA} = V_{ref}, I_K = 10 \text{ mA}, T_A = 25^{\circ}\text{C}) $ $ (T_A = T_{low} \text{ to } T_{high}, \text{ Note 5}) $	V _{ref}	1.237 1.228	1.240	1.243 1.252	V
Reference Input Voltage Deviation Over Temperature (Figure 3) $(V_{KA} = V_{ref}, I_K = 10 \text{ mA}, T_A = T_{low} \text{ to } T_{high}, \text{ Notes 5, 6, 7)}$	ΔV_{ref}	-	7.2	20	mV
Ration of Reference Input Voltage Change to Cathode Voltage Change (Figure 4) $(V_{KA} = V_{ref} \text{ to } 16 \text{ V}, I_K = 10 \text{ mA})$	$\frac{\Delta V_{ref}}{\Delta V_{KA}}$	-	-0.6	-1.5	mV V
Reference Terminal Current (Figure 4) (I _K = 10 mA, R1 = 10 k Ω , R2 = open)	I _{ref}	-	0.15	0.3	μΑ
Reference Input Current Deviation Over Temperature (Figure 4) (I _K = 10 mA, R1 = 10 k Ω , R2 = open, Notes 5, 6, 7)	ΔI_{ref}	-	0.04	0.08	μΑ
Minimum Cathode Current for Regulation (Figure 3)	I _{K(min})	-	30	80	μΑ
Off-State Cathode Current (Figure 5) (V _{KA} = 6.0 V, V _{ref} = 0) (V _{KA} = 16 V, V _{ref} = 0)	I _{K(off)}		0.01 0.012	0.04 0.05	μΑ
Dynamic Impedance (Figure 3) $ (V_{KA} = V_{ref}, I_K = 0.1 \text{ mA to } 20 \text{ mA, } f \leq 1.0 \text{ kHz, Note 8}) $	Z _{KA}	-	0.25	0.4	Ω

- 5. Ambient temperature range: $T_{low} = -40^{\circ}C$, $T_{high} = 85^{\circ}C$. 6. Guaranteed but not tested.
- The deviation parameters ΔV_{ref} and ΔI_{ref} are defined as the difference between the maximum value and minimum value obtained over the full operating ambient temperature range that applied.

The average temperature coefficient of the reference input voltage, αV_{ref} is defined as:

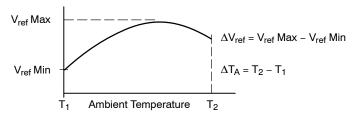
$$\alpha V_{ref} \, \left(\frac{ppm}{^{\circ}C} \right) = \frac{\left(\frac{(\Delta V_{ref})}{V_{ref} \, \left(T_{A} = 25^{\circ}C \right)} \times \, 10^{6} \right)}{\Delta T_{A}}$$

 αV_{ref} can be positive or negative depending on whether V_{ref} Min or V_{ref} Max occurs at the lower ambient temperature, refer to Figure 8. Example: $\Delta V_{ref} = 7.2 \text{ mV}$ and the slope is positive,

$$V_{ref}$$
 @ 25°C = 1.241 V ΔT_A = 125°C

$$\alpha V_{ref} \left(\frac{ppm}{{}^{\circ}C} \right) = \frac{\frac{0.0072}{1.241} \times 10^{6}}{125} = 46 \text{ ppm}/{}^{\circ}C$$

8. The dynamic impedance Z_{KA} is defined as:


$$|Z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$$

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted. NCV prefix indicates TSOP package device. SCV prefix indicates SOT–23 package device.)

		NCV4	31A, SC	V431A	
Characteristic	Symbol	Min	Тур	Max	Unit
Reference Voltage (Figure 3) $ (V_{KA} = V_{ref}, I_K = 10 \text{ mA}, T_A = 25^{\circ}\text{C}) $ $ (T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}) $ $ (T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}) $	V _{ref}	1.228 1.215 1.211	1.240 - -	1.252 1.265 1.265	٧
Reference Input Voltage Deviation Over Temperature (Figure 3) $ (V_{KA} = V_{ref}, I_{K} = 10 \text{ mA}, T_{A} = -40^{\circ}\text{C to } 85^{\circ}\text{C}, \text{ Notes } 9, 10) \\ (V_{KA} = V_{ref}, I_{K} = 10 \text{ mA}, T_{A} = -40^{\circ}\text{C to } 125^{\circ}\text{C}, \text{ Notes } 9, 10) $	ΔV_{ref}	<u>-</u>	7.2 7.2	20 24	mV
Ration of Reference Input Voltage Change to Cathode Voltage Change (Figure 4) $(V_{KA} = V_{ref} \text{ to 16 V}, I_{K} = 10 \text{ mA})$	$\frac{\Delta V_{ref}}{\Delta V_{KA}}$	_	-0.6	-1.5	$\frac{mV}{V}$
Reference Terminal Current (Figure 4) (I _K = 10 mA, R1 = 10 k Ω , R2 = open)	I _{ref}	_	0.15	0.3	μΑ
Reference Input Current Deviation Over Temperature (Figure 4) (I _K = 10 mA, R1 = 10 k Ω , R2 = open, T _A = -40° C to 85°C, Notes 9, 10) (I _K = 10 mA, R1 = 10 k Ω , R2 = open, T _A = -40° C to 125°C, Notes 9, 10)	ΔI_{ref}	<u>-</u>	0.04	0.08 0.10	μА
Minimum Cathode Current for Regulation (Figure 3)	I _{K(min})	_	30	80	μΑ
Off-State Cathode Current (Figure 5) $(V_{KA} = 6.0 \text{ V}, V_{ref} = 0)$ $(V_{KA} = 16 \text{ V}, V_{ref} = 0)$	I _{K(off)}	- -	0.01 0.012	0.04 0.05	μА
Dynamic Impedance (Figure 3) $(V_{KA}=V_{ref},I_{K}=0.1\text{mA}\text{to}20\text{mA},f\leq1.0\text{kHz},\text{Note}11)$	Z _{KA}	-	0.25	0.4	Ω

^{9.} Guaranteed but not tested.

^{10.} The deviation parameters ΔV_{ref} and ΔI_{ref} are defined as the difference between the maximum value and minimum value obtained over the full operating ambient temperature range that applied.

The average temperature coefficient of the reference input voltage, $\alpha \text{V}_{\text{ref}}$ is defined as:

$$\alpha V_{ref} \left(\frac{ppm}{^{\circ}C} \right) = \frac{\left(\frac{(\Delta V_{ref})}{V_{ref} \left(T_{A} = 25^{\circ}C \right)} \times 10^{6} \right)}{\Delta T_{\Delta}}$$

 αV_{ref} can be positive or negative depending on whether V_{ref} Min or V_{ref} Max occurs at the lower ambient temperature, refer to Figure 8.

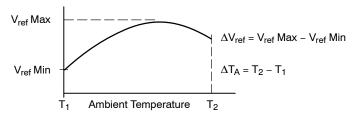
Example: ΔV_{ref} = 7.2 mV and the slope is positive,

$$V_{ref}$$
 @ 25°C = 1.241 V ΔT_A = 125°C

$$\alpha V_{\mbox{ref}} \left(\frac{\mbox{ppm}}{^{\circ}\mbox{C}} \right) = \frac{0.0072}{1.241} \times 10^{6} \\ = 46 \ \mbox{ppm}/^{\circ}\mbox{C}$$

11. The dynamic impedance Z_{KA} is defined as:

$$|Z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$$


$$|Z_{KA}'| = |Z_{KA}| \times \left(1 + \frac{R1}{R2}\right)$$

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted. NCV prefix indicates TSOP package device. SCV prefix indicates SOT-23 package device.)

		NCV431B, SCV431B			
Characteristic	Symbol	Min	Тур	Max	Unit
Reference Voltage (Figure 3) $ (V_{KA} = V_{ref}, I_K = 10 \text{ mA}, T_A = 25^{\circ}\text{C}) $ $ (T_A = -40^{\circ}\text{C to }85^{\circ}\text{C}) $ $ (T_A = -40^{\circ}\text{C to }125^{\circ}\text{C}) $	V _{ref}	1.234 1.228 1.224	1.240 - -	1.246 1.252 1.252	V
Reference Input Voltage Deviation Over Temperature (Figure 3) $(V_{KA} = V_{ref}, I_{K} = 10 \text{ mA}, T_A = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}, \text{ Notes } 9, 10)$ $(V_{KA} = V_{ref}, I_{K} = 10 \text{ mA}, T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}, \text{ Notes } 9, 10)$	ΔV_{ref}	<u>-</u>	7.2 7.2	20 24	mV
Ration of Reference Input Voltage Change to Cathode Voltage Change (Figure 4) $(V_{KA} = V_{ref} \text{ to 16 V}, I_{K} = 10 \text{ mA})$	$\frac{\Delta V_{ref}}{\Delta V_{KA}}$	_	-0.6	-1.5	mV V
Reference Terminal Current (Figure 4) (I _K = 10 mA, R1 = 10 k Ω , R2 = open)	I _{ref}	-	0.15	0.3	μΑ
Reference Input Current Deviation Over Temperature (Figure 4) (I _K = 10 mA, R1 = 10 k Ω , R2 = open, T _A = -40° C to 85°C, Notes 12, 13) (I _K = 10 mA, R1 = 10 k Ω , R2 = open, T _A = -40° C to 125°C, Notes 12, 13)	ΔI_{ref}	<u>-</u>	0.04	0.08 0.10	μΑ
Minimum Cathode Current for Regulation (Figure 3)	I _{K(min})	_	30	80	μΑ
Off-State Cathode Current (Figure 5) $(V_{KA} = 6.0 \text{ V}, V_{ref} = 0)$ $(V_{KA} = 16 \text{ V}, V_{ref} = 0)$	I _{K(off)}	<u>-</u>	0.01 0.012	0.04 0.05	μΑ
Dynamic Impedance (Figure 3) $(V_{KA} = V_{ref}, I_K = 0.1 \text{ mA to } 20 \text{ mA, } f \leq 1.0 \text{ kHz, Note } 14)$	Z _{KA}	-	0.25	0.4	Ω

^{12.} Guaranteed but not tested.

^{13.} The deviation parameters ΔV_{ref} and ΔI_{ref} are defined as the difference between the maximum value and minimum value obtained over the full operating ambient temperature range that applied.

The average temperature coefficient of the reference input voltage, αV_{ref} is defined as:

$$\alpha V_{ref} \left(\frac{ppm}{^{\circ}C} \right) = \frac{\left(\frac{(\Delta V_{ref})}{V_{ref} (T_{A} = 25^{\circ}C)} \times 10^{6} \right)}{\Delta T_{A}}$$

 αV_{ref} can be positive or negative depending on whether V_{ref} Min or V_{ref} Max occurs at the lower ambient temperature, refer to Figure 8.

Example: ΔV_{ref} = 7.2 mV and the slope is positive, V_{ref} @ 25°C = 1.241 V ΔT_A = 125°C

$$\alpha V_{ref} \left(\frac{ppm}{^{\circ}C} \right) = \frac{0.0072 \times 10^{6}}{1.241} = 46 \; ppm/^{\circ}C$$

14. The dynamic impedance $Z_{\mbox{\scriptsize KA}}$ is defined as:

$$|Z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$$

$$|Z_{KA}'| = |Z_{KA}| \times \left(1 + \frac{R1}{R2}\right)$$

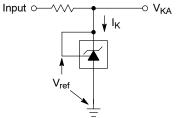


Figure 3. Test Circuit

for $V_{KA} = V_{ref}$

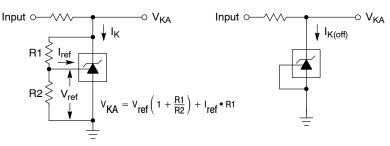


Figure 4. Test Circuit for $V_{KA} > V_{ref}$

Figure 5. Test Circuit for I_{K(off)}

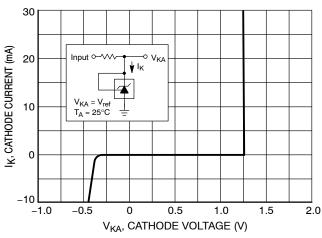


Figure 6. Cathode Current vs. Cathode Voltage

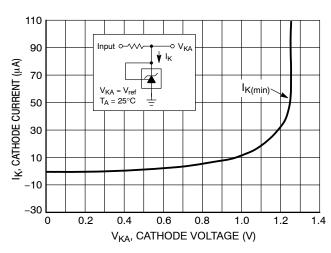


Figure 7. Cathode Current vs. Cathode Voltage

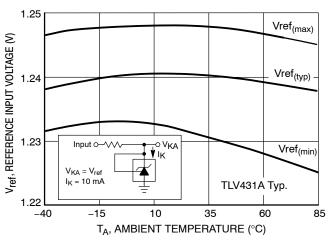


Figure 8. Reference Input Voltage versus **Ambient Temperature**

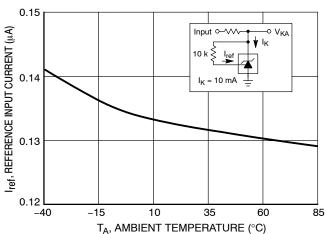
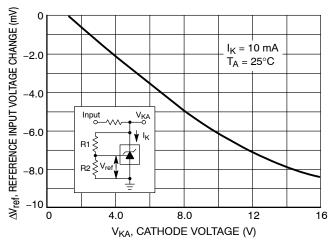
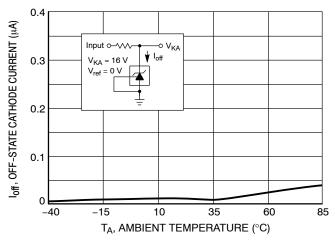



Figure 9. Reference Input Current versus **Ambient Temperature**



4.0

(Val = 16 V Vref = 0 V Vref

Figure 10. Reference Input Voltage Change versus Cathode Voltage

Figure 11. Off-State Cathode Current versus Cathode Voltage

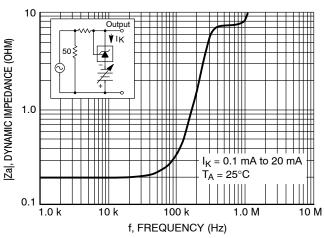
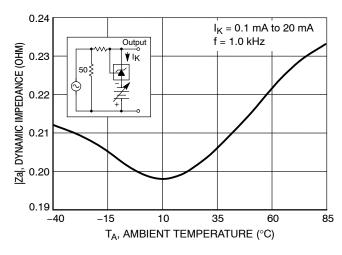



Figure 12. Off-State Cathode Current versus
Ambient Temperature

Figure 13. Dynamic Impedance versus Frequency

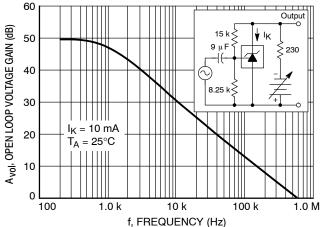
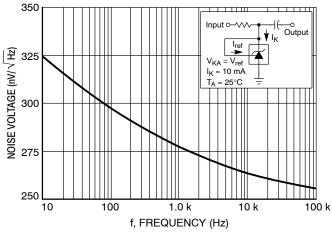
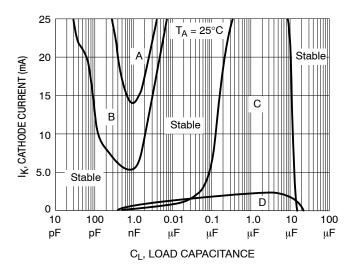
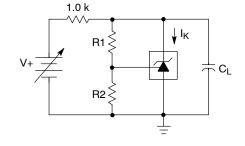



Figure 14. Dynamic Impedance versus

Ambient Temperature

Figure 15. Open-Loop Voltage Gain versus Frequency




0 2.0 3.0 1.0 4.0

1.8 kΩ Output Generator = 100 kHz 1.5 Output 1.0 (VOLTS) T_A = 25°C 0.5 Input 0 2.0 5.0 6.0 7.0 8.0 9.0 t, TIME (μs)

Figure 16. Spectral Noise Density

Figure 17. Pulse Response

V_{KA} (V) Unstable R1 R2 Regions $(k\Omega)$ $(k\Omega)$ A, C 0 V_{ref} ∞ B, D 5.0 30.4 10

Figure 18. Stability Boundary Conditions

Figure 19. Test Circuit for Figure 18

Stability

Figures 18 and 19 show the stability boundaries and circuit configurations for the worst case conditions with the load capacitance mounted as close as possible to the device. The required load capacitance for stable operation can vary depending on the operating temperature and capacitor

equivalent series resistance (ESR). Ceramic or tantalum surface mount capacitors are recommended for both temperature and ESR. The application circuit stability should be verified over the anticipated operating current and temperature ranges.

TYPICAL APPLICATIONS

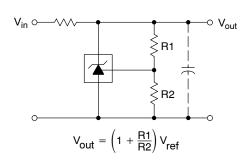


Figure 20. Shunt Regulator

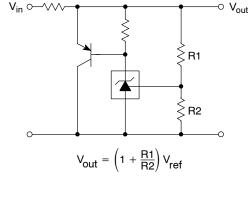


Figure 21. High Current Shunt Regulator

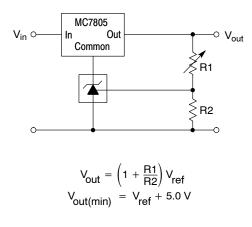


Figure 22. Output Control for a Three Terminal Fixed Regulator

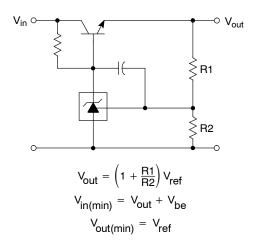


Figure 23. Series Pass Regulator

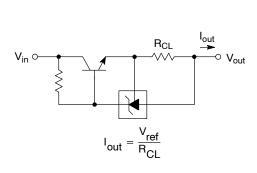


Figure 24. Constant Current Source

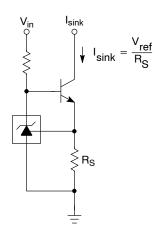


Figure 25. Constant Current Sink

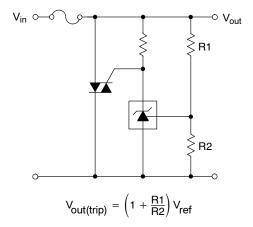


Figure 26. TRIAC Crowbar

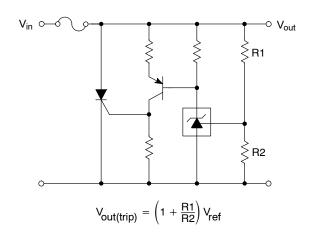
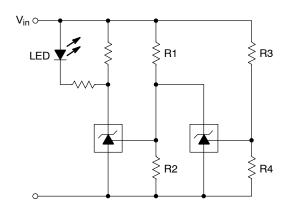



Figure 27. SCR Crowbar

 $\label{eq:L.E.D.} \text{L.E.D. indicator is 'ON' when } V_{in} \text{ is between the upper and lower limits,}$

Lower limit =
$$\left(1 + \frac{R1}{R2}\right) V_{ref}$$

Upper limit = $\left(1 + \frac{R3}{R4}\right) V_{ref}$

Figure 28. Voltage Monitor

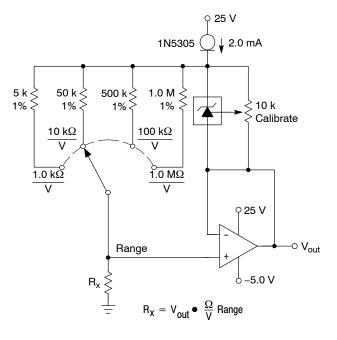


Figure 29. Linear Ohmmeter

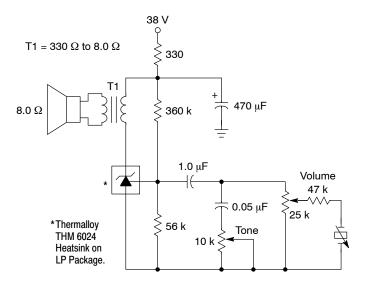


Figure 30. Simple 400 mW Phono Amplifier

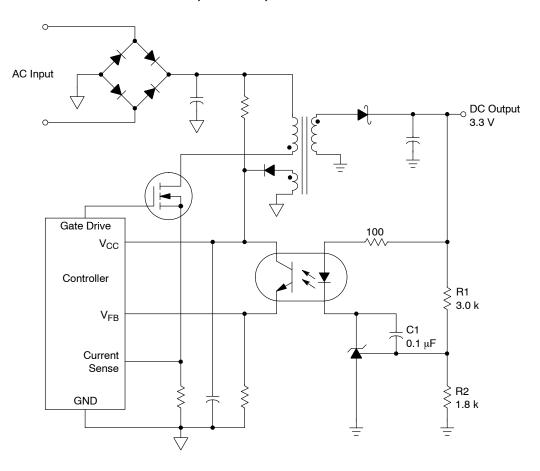
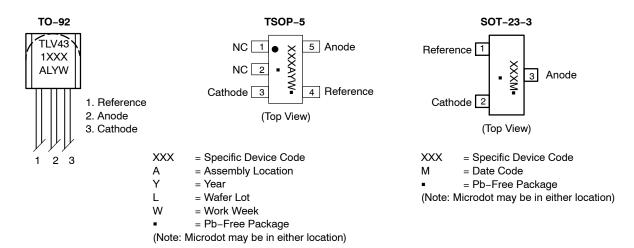
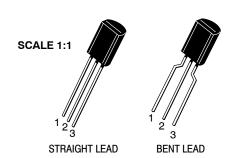



Figure 31. Isolated Output Line Powered Switching Power Supply

The above circuit shows the TLV431A/B/C as a compensated amplifier controlling the feedback loop of an isolated output line powered switching regulator. The output voltage is programmed to 3.3 V by the resistors values selected for R1 and R2. The minimum output voltage that can be programmed with this circuit is 2.64 V, and is limited by the sum of the reference voltage (1.24 V) and the forward drop of the optocoupler light emitting diode (1.4 V). Capacitor C1 provides loop compensation.

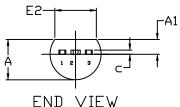
PIN CONNECTIONS AND DEVICE MARKING

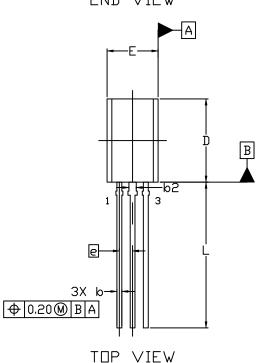

ORDERING INFORMATION

Device	Device Code	Package	Shipping [†]
TLV431ALPG	ALP	TO-92-3 (Pb-Free)	6000 / Box
TLV431ALPRAG	ALP	TO-92-3 (Pb-Free)	2000 / Tape & Reel
TLV431ALPREG	ALP	TO-92-3 (Pb-Free)	2000 / Tape & Reel
TLV431ALPRMG	ALP	TO-92-3 (Pb-Free)	2000 / Ammo Pack
TLV431ALPRPG	ALP	TO-92-3 (Pb-Free)	2000 / Ammo Pack
TLV431ASNT1G	RAA	TSOP-5 (Pb-Free, Halide-Free)	3000 / Tape & Reel
TLV431ASN1T1G	RAF	SOT-23-3 (Pb-Free, Halide-Free)	3000 / Tape & Reel
TLV431BLPG	BLP	TO-92-3 (Pb-Free)	6000 / Box
TLV431BLPRAG	BLP	TO-92-3 (Pb-Free)	2000 / Tape & Reel
TLV431BLPREG	BLP	TO-92-3 (Pb-Free)	2000 / Tape & Reel
TLV431BLPRMG	BLP	TO-92-3 (Pb-Free)	2000 / Ammo Pack
TLV431BLPRPG	BLP	TO-92-3 (Pb-Free)	2000 / Ammo Pack
TLV431BSNT1G	RAH	TSOP-5 (Pb-Free, Halide-Free)	3000 / Tape & Reel
TLV431BSN1T1G	RAG	SOT-23-3 (Pb-Free, Halide-Free)	3000 / Tape & Reel
TLV431CSN1T1G	AAN	SOT-23-3 (Pb-Free, Halide-Free)	3000 / Tape & Reel
SCV431ASN1T1G*	RAE	SOT-23-3 (Pb-Free, Halide-Free)	3000 / Tape & Reel
SCV431BSN1T1G*	RAC	SOT-23-3 (Pb-Free, Halide-Free)	3000 / Tape & Reel
NCV431ASNT1G*	ACH	TSOP-5 (Pb-Free, Halide-Free)	3000 / Tape & Reel
NCV431BSNT1G*	AD6	TSOP-5 (Pb-Free, Halide-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*SCV, NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and

PPAP Capable.





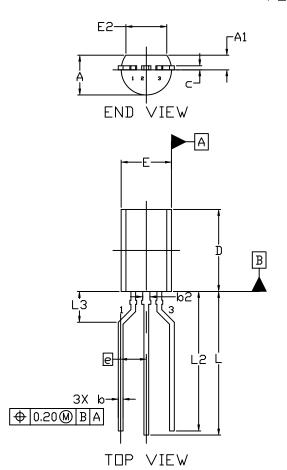
TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D

DATE 05 MAR 2021

STRAIGHT LEAD

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
- 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.


	MILLIMETERS					
DIM	MIN.	N□M.	MAX.			
Α	3.75	3.90	4.05			
A1	1.28	1.43	1.58			
b	0.38	0.465	0.55			
b2	0.62	0.70	0.78			
c	0.35	0.40	0.45			
D	7.85	8.00	8.15			
E	4.75	4.90	5.05			
E2	3.90					
е	1.27 BSC					
L	13.80	14.00	14.20			

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 1 OF 3		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

FORMED LEAD

NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
- 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.

	MILLIMETERS					
DIM	MIN.	N□M.	MAX.			
Α	3.75	3.90	4.05			
A1	1.28	1.43	1.58			
b	0.38	0.465	0.55			
b2	0.62	0.70	0.78			
С	0.35	0.40	0.45			
D	7.85	8.00	8.15			
E	4.75	4.90	5.05			
E2	3.90					
e		2.50 BSC				
L	13.80	14.00	14.20			
L2	13.20	13.60	14.00			
L3		3.00 REF				

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 3		

onsemi and ONSeMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT

CASE 29-10 ISSUE D

DATE 05 MAR 2021

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	PIN 1.	CATHODE CATHODE ANODE		DRAIN SOURCE GATE
	GATE	PIN 1.	SOURCE DRAIN	PIN 1. 2.	DRAIN GATE	STYLE 9: PIN 1. 2. 3.	BASE 1 EMITTER		
2.	CATHODE & ANODE	2.	MAIN TERMINAL 1 GATE MAIN TERMINAL 2	2.	ANODE 1 GATE CATHODE 2	2.	EMITTER		
2.	ANODE	PINI 1	COLLECTOR BASE EMITTER	PIN 1	ANODE	DINI 1		2.	NOT CONNECTED CATHODE ANODE
2.			GATE	PIN 1. 2.	GATE SOURCE DRAIN	PIN 1. 2.	EMITTER COLLECTOR/ANODE CATHODE	PIN 1. 2.	
	V _{CC}		MT SUBSTRATE	PIN 1. 2.	CATHODE	PIN 1. 2.		PIN 1. 2.	
		STYLE 32: PIN 1. 2. 3.	BASE COLLECTOR EMITTER	STYLE 33: PIN 1. 2. 3.	RETURN	PIN 1. 2.	INPUT GROUND LOGIC		

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code

A = Assembly Location

L = Wafer Lot

Y = Year

W = Work Week

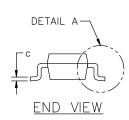
= Pb-Free Package

(Note: Microdot may be in either location)

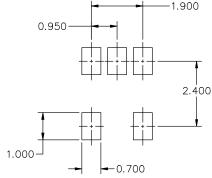
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER: 98AON52857E		Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 3 OF 3		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

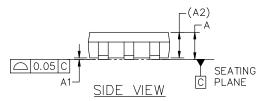

TSOP-5 3.00x1.50x0.95, 0.95P **CASE 483**

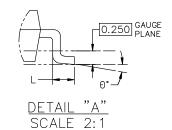
ISSUE P


DATE 01 APR 2024

NOTES:

- DIMENSIONING AND TOLERANCING CONFORM TO ASME 1. Y14.5-2018.
- 2.
- ALL DIMENSION ARE IN MILLIMETERS (ANGLES IN DEGREES). MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. 3. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OF GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION D.
- OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.


DIM	MILLIMETERS					
ININ	MIN.	NOM.	MAX.			
А	0.900	1.000	1.100			
A1	0.010	0.055	0.100			
A2	0.950 REF.					
b	0.250	0.375	0.500			
С	0.100	0.180	0.260			
D	2.850	3.000	3.150			
Е	2.500	2.750	3.000			
E1	1.350	1.500	1.650			
е	0.950 BSC					
L	0.200	0.400	0.600			
Θ	0.	5°	10°			



RECOMMENDED MOUNTING FOOTPRINT*

FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

NOTE 5 В Ė1 PIN 1 **IDENTIFIER** ΙAŀ TOP VIEW

GENERIC MARKING DIAGRAM*

Discrete/Logic

= Date Code

XXX = Specific Device Code

= Pb-Free Package

XXX = Specific Device Code

= Assembly Location

= Year W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

М

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:

98ARB18753C

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

TSOP-5 3.00x1.50x0.95, 0.95P

PAGE 1 OF 1

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales