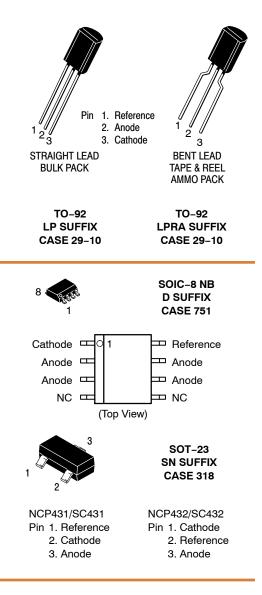


Programmable Precision References

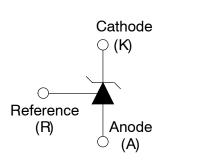
NCP431A, SC431A, NCP431B, SC431B, NCP432B, SC432B Series


The NCP431/NCP432 integrated circuits are three–terminal programmable shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from Vref to 36 V using two external resistors. These devices exhibit a wide operating current range of 40 μA to 100 mA with a typical dynamic impedance of 0.22 Ω . The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5 V reference makes it convenient to obtain a stable reference from 5.0 V logic supplies, and since the NCP431/NCP432 operates as a shunt regulator, it can be used as either a positive or negative voltage reference. Low minimum operating current makes this device an ideal choice for secondary regulators in SMPS adapters with extremely low no–load consumption.

Features

- Programmable Output Voltage to 36 V
- Low Minimum Operating Current: 40 μA, Typ @ 25°C
- Voltage Reference Tolerance: ±0.5%, Typ @ 25°C (NCP431B/NCP432B)
- Low Dynamic Output Impedance, 0.22 Ω Typical
- Sink Current Capability of 40 μA to 100 mA
- Equivalent Full-Range Temperature Coefficient of 50 ppm/°C Typical
- Temperature Compensated for Operation over Full Rated Operating Temperature Range
- SC Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These are Pb-Free Devices

Typical Applications


- Voltage Adapters
- Switching Power Supply
- Precision Voltage Reference
- Charger
- Instrumentation

ORDERING AND MARKING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 14 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 14.

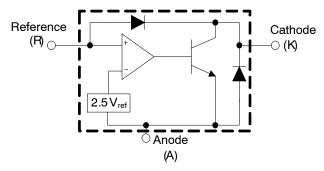


Figure 1. Symbol

Figure 2. Representative Block diagram

This device contains 20 active transistors

MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted)

Symbol	Rating	Value	Unit
V _{KA}	Cathode to Anode Voltage	37	V
I _K	Cathode Current Range, Continuous	-100 to +150	mA
I _{ref}	Reference Input Current Range, Continuous	−5 to +10	mA
TJ	Operating Junction Temperature	150	°C
T _A	Operating Ambient Temperature Range	-40 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
P _D	Total Power Dissipation @ T _A = 25°C Derate above 25°C Ambient Temperature D, LP Suffix Plastic Package SN1 Suffix Plastic Package	0.70 0.52	W
P _D	Total Power Dissipation @ T _C = 25°C Derate above 25°C Case Temperature D, LP Suffix Plastic Package	1.5	W
HBM CDM	ESD Rating (Note 1) Human Body Model per JEDEC JESD22-A114F Charged Device Model per JEDEC JESD22-C101E	>2000 >1000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Condition	Min	Max	Unit
V _{KA}	Cathode to Anode Voltage	V_{ref}	36	V
I _K	Cathode Current	0.04	100	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

THERMAL CHARACTERISTICS

Symbol	Characteristic	LP Suffix Package (50 mm ² x 35 μm Cu)	D Suffix Package (50 mm² x 35 μm Cu)	SN Suffix Package (10 mm² x 35 μm Cu)	Unit
$R_{\Theta JA}$	Thermal Resistance, Junction-to-Ambient	176	210	255	°C/W
$R_{\Theta JL}$	Thermal Resistance, Junction-to-Lead (Lead 3)	75	68	80	°C/W

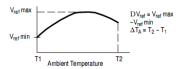
^{1.} This device contains latch-up protection and exceeds ±100 mA per JEDEC standard JESD78.

ELECTRICAL CHARACTERISTICS (T_A = 25°C, unless otherwise noted.)

		N	NCP431AC		N	ICP431	AI		CP431/ SC431/	,	
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{ref}	Reference Input Voltage $V_{KA} = V_{ref}$, $I_K = 1$ mA $T_A = 25^{\circ}C$ $T_A = T_{low}$ to T_{high} (Figure 3, Note 2)		2.500 2.500			2.500 2.500	2.525 2.525		2.500 2.500	2.525 2.525	V
ΔV_{refT}	Reference Input Voltage Deviation Over Temperature Range (Figure 3, Notes 3, 4) $V_{KA} = V_{ref}$, $I_K = 1 \text{ mA}$	-	-	-	-	5.0	10	-	10	15	mV
$\frac{\Delta V_{ref}}{\Delta V_{KA}}$	Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage $I_K = 1$ mA (Figure 4), $\Delta V_{KA} = 10$ V to V_{ref} $\Delta V_{KA} = 36$ V to 10 V	_ _	-1.85 -0.80	-3.1 -1.8	- -	-1.85 -0.80	-3.1 -1.8	_ _	-1.85 -0.80	-3.1 -1.8	mV/ V
I _{ref}	Reference Input Current (Figure 4) $I_K = 1 \text{ mA}$, R1 = 220 k, R2 = ∞ $T_A = -40^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$	-	81	190	_	81	190	-	81	190	nA
ΔI_{refT}	Reference Input Current Deviation Over Temperature Range (Figure 4, Note 3) $I_K = 1$ mA, R1 = 10 k, R2 = ∞	-	22	55	_	22	55	-	22	55	nA
I _{min}	Minimum Cathode Current For Regulation $V_{KA} = V_{ref}$ (Figure 3)	-	40	60	-	40	60	-	40	60	μΑ
I _{off}	Off-State Cathode Current (Figure 5) V _{KA} = 36 V, V _{ref} = 0 V	-	180	1000	-	180	1000	-	180	1000	nA
Z _{KA}	Dynamic Impedance (Figure 3, Note 5) $V_{KA} = V_{ref}, \Delta I_K = 1.0 \text{ mA to } 100 \text{ mA} \\ f \leq 1.0 \text{ kHz}$	-	0.22	0.5	_	0.22	0.5	_	0.22	0.5	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. $T_{low} = -40^{\circ}\text{C}$ for NCP431AI, NCP431AV, SC431AV


= 0°C for NCP431AC

T_{high} = 70°C for NCP431AC

= 85°C for NCP431AI

= 125°C for NCP431AV, SC431AV

- 3. Guaranteed by design
- The deviation parameter ΔV_{refT} is defined as the difference between the maximum and minimum values obtained over the full operating ambient temperature range that applies.

The average temperature coefficient of the reference input voltage, Vref is defined as:

$$V_{ref} \frac{ppm}{{}^{\circ}C} = \frac{\left(\frac{\Delta V_{ref}}{V_{ref}@25{}^{\circ}C}\right) \times 10^{6}}{\Delta T_{A}} = \frac{\Delta V_{ref} \times 10^{6}}{\Delta T_{A}(V_{ref}@25{}^{\circ}C)}$$

 α Vref can be positive or negative depending on whether Vref Min or Vref Max occurs at the lower ambient temperature.

Example:
$$\Delta V_{refT} = 17 \text{ mV}$$
 and slope is positive

Example:
$$\Delta V_{refT}$$
 = 17 mV and slope is positive V_{ref} = 2.5 V, ΔT_A = 165°C (from -40°C to +125°C)

$$\alpha V_{ref} = \frac{0.017 \cdot 10^6}{165 \cdot 2.5} = 41.2 \text{ ppm/}^{\circ}\text{C}$$

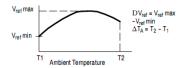
- The dynamic impedance Z_{KA} is defined as: (|Z_{KA}| = (ΔV_{KA}/ΔI_K). When the device is programmed with two external resistors, R1 and R2, the total dynamic impedance of the circuit is defined as: |Z_{KA}'| ≈ |Z_{KA}| (1 + (R1/R2)).
 SC431AVSNT1G T_{low} = −40°C, T_{high} = 125°C. Guaranteed by design. SC Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (T_A = 25°C, unless otherwise noted.)

			NCP431BC NCP432BC			NCP431BI NCP432BI			NCP/SC431BV NCP/SC432BV		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{ref}	Reference Input Voltage $V_{KA} = V_{ref}, I_K = 1 \text{ mA}$ $T_A = 25^{\circ}\text{C}$ $T_A = T_{low}$ to T_{high} (Figure 3, Note 7)				2.4875 2.4775						V
ΔV_{refT}	Reference Input Voltage Deviation Over Temperature Range (Figure 3, Notes 8, 9) $V_{KA} = V_{ref}$, $I_K = 1$ mA	- -	-	- -	- -	5.0	10 1-	- -	10	15 15	mV
$\frac{\Delta V_{ref}}{\Delta V_{KA}}$	Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage $I_K = 1$ mA (Figure 4), $\Delta V_{KA} = 10$ V to V_{ref} $\Delta V_{KA} = 36$ V to 10 V	- -	-1.85 -0.80	-3.1 -1.8	- -	-1.85 -0.80	-3.1 -1.8	- -	-1.85 -0.80	-3.1 -1.8	mV/ V
I _{ref}	Reference Input Current (Figure 4) $I_K = 1$ mA, R1 = 220 k, R2 = ∞ $T_A = -40$ °C to +125°C	-	81	190	-	81	190	-	81	190	nA
ΔI_{refT}	Reference Input Current Deviation Over Temperature Range (Figure 4, Note 8) $I_K = 1$ mA, R1 = 10 k, R2 = ∞	-	22	55	-	22	55	-	22	55	nA
I _{min}		-	40	60	_	40	60	-	40	60	μΑ
I _{off}	Off-State Cathode Current (Figure 5) V _{KA} = 36 V, V _{ref} = 0 V	-	180	1000	_	180	1000	_	180	1000	nA
Z _{KA}	Dynamic Impedance (Figure 3, Note 10) $V_{KA} = V_{ref}, \Delta I_K = 1.0$ mA to 100 mA $f \leq 1.0$ kHz	-	0.22	0.5	-	0.22	0.5	-	0.22	0.5	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

7. $T_{low} = -40^{\circ}$ C for NCP431BI, NCP431BV, NCP432BI, NCP432BV, SC431B, SC432B


= 0°C for NCP431BC, NCP432BC

T_{high} = 70°C for NCP431BC, NCP432BC

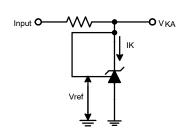
= 85°C for NCP431BI, NCP432BI

= 125°C for NCP431BV, NCP432BV, SC431BV, SC432BV

- 8. Guaranteed by design
- The deviation parameter ΔV_{refT} is defined as the difference between the maximum and minimum values obtained over the full operating ambient temperature range that applies.

The average temperature coefficient of the reference input voltage, Vref is defined as:

$$V_{ref} \frac{ppm}{^{\circ}C} = \frac{\left(\frac{\Delta V_{ref}}{V_{ref}@25^{\circ}C}\right) \times 10^{6}}{\Delta T_{A}} = \frac{\Delta V_{ref} \times 10^{6}}{\Delta T_{A}(V_{ref}@25^{\circ}C)}$$


 α Vref can be positive or negative depending on whether Vref Min or Vref Max occurs at the lower ambient temperature.

Example: ΔV_{refT} = 17 mV and slope is positive

$$V_{ref} = 2.5 \text{ V}, \Delta T_A = 165^{\circ}\text{C} \text{ (from } -40^{\circ}\text{C to } +125^{\circ}\text{C)}$$

$$\alpha V_{ref} = \frac{0.017 \cdot 10^6}{165 \cdot 2.5} = 41.2 \text{ ppm/}^{\circ} \text{C}$$

- 10. The dynamic impedance Z_{KA} is defined as: $(|Z_{KA}| = (\Delta V_{KA}/\Delta I_K)$. When the device is programmed with two external resistors, R1 and R2, the total dynamic impedance of the circuit is defined as: $|Z_{KA}| \approx |Z_{KA}| (1 + (R1/R2))$ 11. SC431BVSNT1G, SC432BVSNT1G $T_{low} = -40^{\circ}$ C, $T_{high} = 125^{\circ}$ C. Guaranteed by design. SC Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

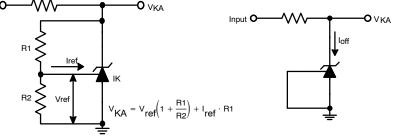
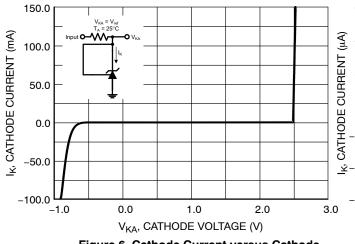



Figure 3. Test Circuit for $V_{KA} = V_{ref}$

Figure 4. Test Circuit for $V_{KA} > V_{ref}$

Figure 5. Test Circuit for Ioff

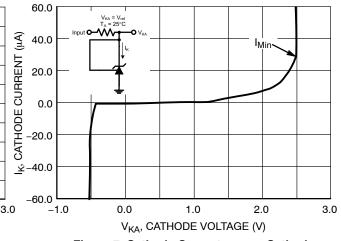


Figure 6. Cathode Current versus Cathode Voltage

Figure 7. Cathode Current versus Cathode Voltage

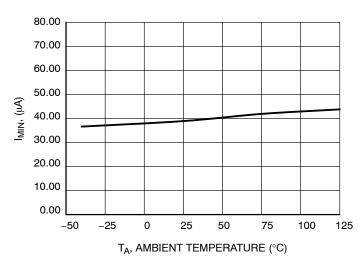


Figure 8. Minimum Cathode Current Regulation versus Ambient Temperature

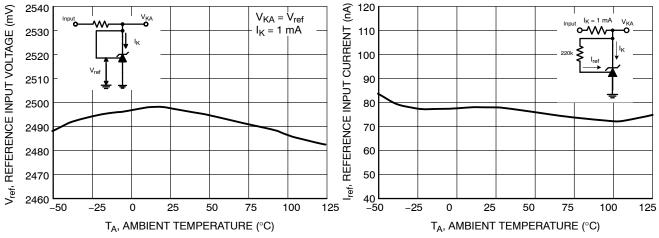


Figure 9. Reference Input Voltage versus Ambient temperature

Figure 10. Reference Input Current versus

Ambient temperature

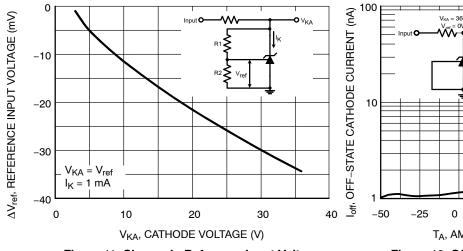


Figure 11. Change in Reference Input Voltage versus Cathode Voltage

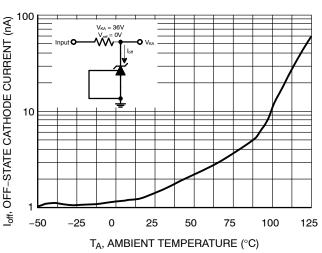


Figure 12. Off-State Cathode Current versus Ambient Temperature

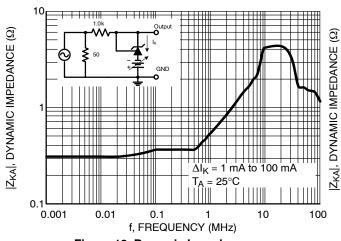


Figure 13. Dynamic Impedance versus Frequency

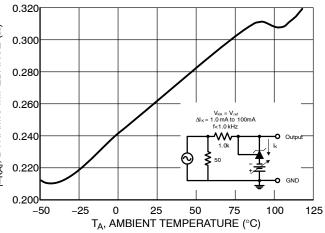


Figure 14. Dynamic Impedance versus Ambient Temperature

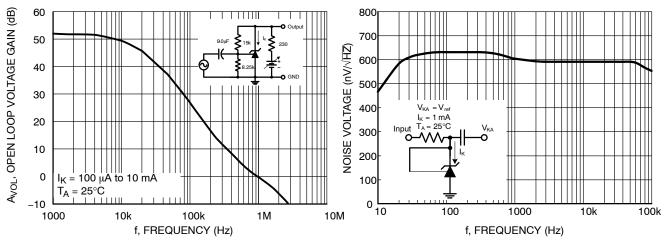
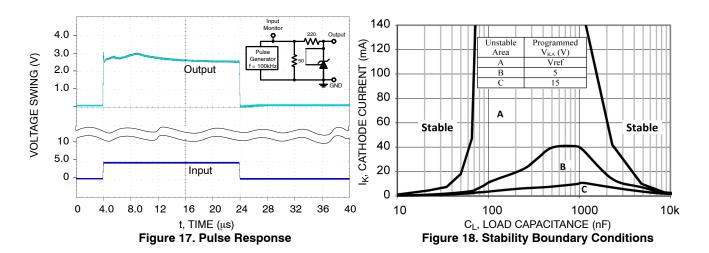



Figure 15. Open-Loop Voltage Gain versus Frequency

Figure 16. Spectral Noise Density

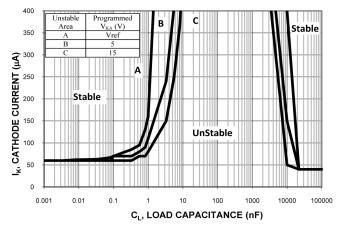


Figure 19. Stability Boundary Conditions for Small Cathode Current

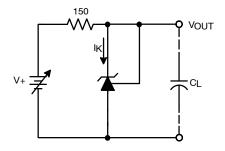


Figure 20. Test Circuit For Curve A of Stability Boundary Conditions

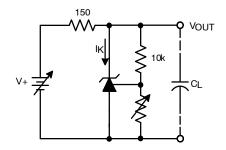


Figure 21. Test Circuit For Curve B And C of Stability Boundary Conditions

TYPICAL APPLICATIONS

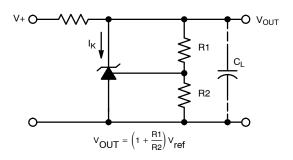


Figure 22. Shunt Regulator

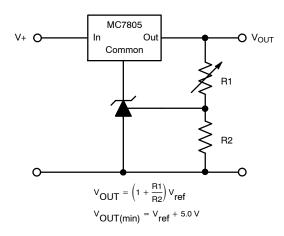


Figure 24. Output Control for a Tree-Terminal Fixed Regulator

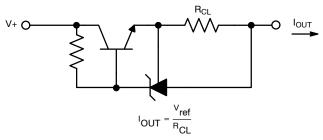


Figure 26. Constant Current Source

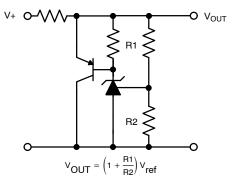


Figure 23. High Current Shunt Regulator

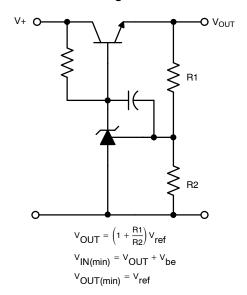


Figure 25. Series Pass Regulator

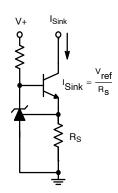


Figure 27. Constant Current Sink

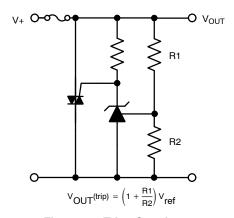


Figure 28. Triac Crowbar

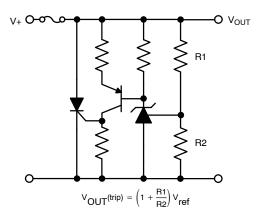
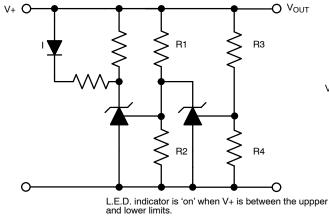



Figure 29. SRC Crowbar

 V_{OUT}

V+

≈2.0 V

V_{IN}
V_{IN}
V_{ref}
V_{th} = V_{ref}

Figure 31. Single-Supply Comparator with Temperature-Compensated Threshold

and lower limits. Lower Limit = $\left(1 + \frac{R1}{R2}\right)V_{ref}$ Upper Limit = $\left(1 + \frac{R3}{R4}\right)V_{ref}$

Figure 30. Voltage Monitoring

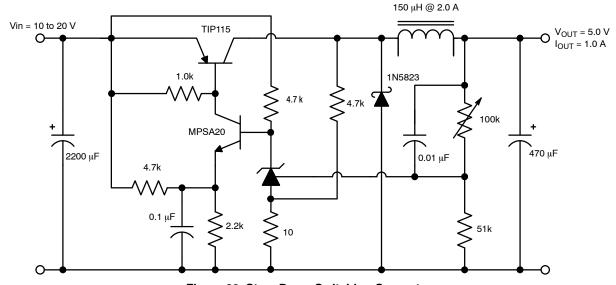


Figure 32. Step-Down Switching Converter

APPLICATIONS INFORMATION

The NCP431/NCP432 is a programmable precision reference which is used in a variety of ways. It serves as a reference voltage in circuits where a non-standard reference voltage is needed. Other uses include feedback control for driving an optocoupler in power supplies, voltage monitor, constant current source, constant current sink and series pass regulator. In each of these applications, it is critical to maintain stability of the device at various operating currents and load capacitances. In some cases the circuit designer can estimate the stabilization capacitance from the stability boundary conditions curve provided in Figure 18. However, these typical curves only provide stability information at specific cathode voltages and at a specific load condition. Additional information is needed to determine the capacitance needed to optimize phase margin or allow for process variation.

A simplified model of the NCP431/NCP432 is shown in Figure 33. When tested for stability boundaries, the load resistance is $150\,\Omega$. The model reference input consists of an input transistor and a dc emitter resistance connected to the device anode. A dependent current source, Gm, develops a current whose amplitude is determined by the difference between the 1.78 V internal reference voltage source and the input transistor emitter voltage. A portion of Gm flows through compensation capacitance, CP2. The voltage across CP2 drives the output dependent current source, Go, which is connected across the device cathode and anode.

Model component values are:

Vref = 1.78 V

$$Gm = 0.3 + 2.7 \exp(-IC/26 mA)$$

where IC is the device cathode current and Gm is in mhos Go = 1.25 (Vcp2) μ mhos.

Resistor and capacitor typical values are shown on the model. Process tolerances are $\pm 20\%$ for resistors, $\pm 10\%$ for capacitors, and $\pm 40\%$ for transconductances.

An examination of the device model reveals the location of circuit poles and zeroes:

$$P1 = \frac{1}{2\pi R_{GM}C_{P1}} = \frac{1}{2\pi \cdot 1.0M \cdot 20 \text{ pF}} = 7.96 \text{ kHz}$$

$$P2 = \frac{1}{2\pi R_{P2}C_{P2}} = \frac{1}{2\pi \cdot 10M \cdot 0.265 \text{ pF}} = 60 \text{ kHz}$$

$$Z1 = \frac{1}{2\pi R_{Z1}C_{P1}} = \frac{1}{2\pi \cdot 15.9k \cdot 20 \text{ pF}} = 500 \text{ kHz}$$

In addition, there is an external circuit pole defined by the load:

$$P_{L} = \frac{1}{2\pi R_{I} C_{I}}$$

Also, the transfer dc voltage gain of the NCP431 is:

$$G = G_M R_{GM} GoR_L$$

Example 1:

 I_C =10 mA, R_L = 230 Ω , C_L = 0. Define the transfer gain. The DC gain is:

$$\begin{split} G &= G_M R_{GM} Go R_L = (2.138)(1.0M)(1.25\mu)(230) \\ &= 615 = 56 \text{ dB} \end{split}$$

Loop gain =
$$G \frac{8.25k}{8.25k + 15k} = 218 = 47 \text{ dB}$$

The resulting transfer function Bode plot is shown in Figure 34. The asymptotic plot may be expressed as the following equation:

$$Av = 615 \frac{\left(1 + \frac{jf}{500 \text{ kHz}}\right)}{\left(1 + \frac{jf}{8.0 \text{ kHz}}\right)\left(1 + \frac{jf}{60 \text{ kHz}}\right)}$$

The Bode plot shows a unity gain crossover frequency of approximately 600 kHz. The phase margin, calculated from the equation, would be 55.9°. This model matches the Open–Loop Bode Plot of Figure 15. The total loop would have a unity gain frequency of about 300 kHz with a phase margin of about 44°.

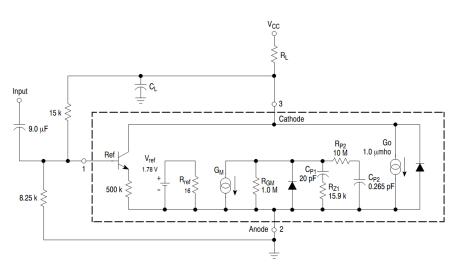


Figure 33. Simplified NCP431/NCP432 Device Model

NCP431/NCP432 OPEN-LOOP VOLTAGE GAIN VERSUS FREQUENCY

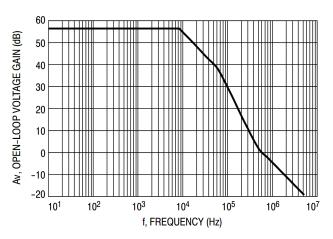


Figure 34. Example 1 Circuit Open Loop Gain Plot

Example 2.

 I_C = 7.5 mA, R_L = 2.2 k $\Omega,\,C_L$ = 0.01 $\mu F.$ Cathode tied to reference input pin. An examination of the data sheet stability boundary curve (Figure 18) shows that this value of load capacitance and cathode current is on the boundary.

Define the transfer gain.

The DC gain is:

$$G = G_M R_{GM} GoR_L = (2.138)(1.0M)(1.25\mu)(230)$$

= 6389 = 76 dB

The resulting open loop Bode plot is shown in Figure 35. The asymptotic plot may be expressed as the following equation:

$$Av = 615 \frac{\left(1 + \frac{jf}{500 \text{ kHz}}\right)}{\left(1 + \frac{jf}{8.0 \text{ kHz}}\right)\left(1 + \frac{jf}{60 \text{ kHz}}\right)\left(1 + \frac{jf}{7.2 \text{ kHz}}\right)}$$

Note that the transfer function now has an extra pole formed by the load capacitance and load resistance.

Note that the crossover frequency in this case is about 250 kHz, having a phase margin of about -46°. Therefore, instability of this circuit is likely.

NCP431/NCP432 OPEN-LOOP BODE PLOT WITH LOAD CAP

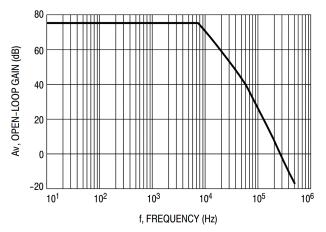


Figure 35. Example 2 Circuit Open Loop Gain Plot

With three poles, this system is unstable. The only hope for stabilizing this circuit is to add a zero. However, that can only be done by adding a series resistance to the output capacitance, which will reduce its effectiveness as a noise filter. Therefore, practically, in reference voltage applications, the best solution appears to be to use a smaller value of capacitance in low noise applications or a very large value to provide noise filtering and a dominant pole rolloff of the system.

The NCP431/NCP432 is often used as a regulator in secondary side of a switch mode power supply (SMPS).

The benefit of this reference is high and stable gain under low bias currents. Figure 36 shows dependence of the gain (dynamic impedance) on the bias current. Value of minimum cathode current that is needed to assure stable gain is $80~\mu A$ maximum.

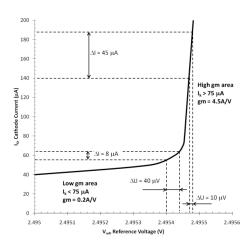


Figure 36. Knee of Reference

Regulator with TL431 or other references in secondary side of a SMPS needs bias resistor to increase cathode current to reach high and stable gain (refer to Figure 37). This bias resistor does not have to be used in regulator with NCP431/NCP432 thanks to its low minimum cathode current.

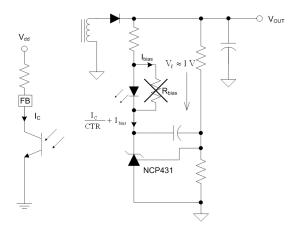


Figure 37. SMPS Secondary Side and Feedback Connection on Primary Side

The NCP431/NCP432 operates with very low leakage and reference input current. Sum of these currents is lower than 100 nA. Regulator with the NCP431/NCP432 minimizes parasitic power consumption.

The best way to achieve extremely low no-load consumption in SMPS applications is to use NCP431/NCP432 as regulator on the secondary side. The consumption is reduced by minimum parasitic consumption and very low bias current of NCP431/NCP432.

MARKING DIAGRAMS

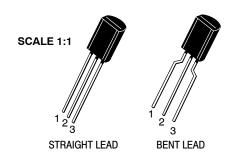
xx, xxx, xxx = Specific Device Code A = Assembly Location

L = Wafer Lot
Y = Year
M = Date Code
W = Work Week
■ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

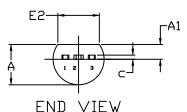
Device	Marking	Tolerance	Operating Temperature Range	Package	Shipping [†]
NCP431ACSNT1G	VRF	1%		SOT-23-3	3000 / Tape & Reel
NCP431BCSNT1G	VRJ	0.5%	0°C to 70°C	(Pb-Free)	
NCP432BCSNT1G	VRM	0.5%			
NCP431AISNT1G	VRG	1%		SOT-23-3	3000 / Tape & Reel
NCP431BISNT1G	VRK	0.5%	–40°C to 85°C	(Pb-Free)	
NCP432BISNT1G	VRN	0.5%			
NCP431AVSNT1G / SC431AVSNT1G*	VRH	1%		SOT-23-3	3000 / Tape & Reel
NCP431BVSNT1G / SC431BVSNT1G*	VRL	0.5%	–40°C to 125°C	(Pb-Free)	
NCP432BVSNT1G / SC432BVSNT1G*	VRP	0.5%			


DISCONTINUED (Note 12)

NCP431ACDR2G	AC	1%		SOIC-8 (Pb-Free)	2500 / Tape & Reel
NCP431ACLPRAG	ACLP	1%	0°C to 70°C	TO-92 (TO-226) (Pb-Free)	2000 / Tape & Reel
NCP431AIDR2G	AI	1%		SOIC-8 (Pb-Free)	2500 / Tape & Reel
NCP431AILPRAG	AILP	1%	–40°C to 85°C	TO-92 (TO-226) (Pb-Free)	2000 / Tape & Reel
NCP431AVDR2G	AV	1%		SOIC-8 (Pb-Free)	2500 / Tape & Reel
NCP431AVLPRAG	AVLP	1%	–40°C to 125°C	TO-92 200 0°C to 125°C (TO-226) (Pb-Free)	
NCP431AVLPG	AVLP	1%		TO-92 (TO-226) (Pb-Free)	2000 Units / Bag

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}SC Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.


^{12.} **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com.

TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D

DATE 05 MAR 2021

STRAIGHT LEAD

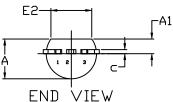
NOTES:

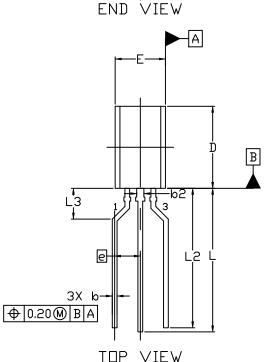
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
- 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.

	M:	ILLIMETER	25				
DIM	MIN.	N□M.	MAX.				
Δ	3.75	3.90	4.05				
A1	1.28	1.43	1.58				
Ø	0.38	0.465	0.55				
ρQ	0.62	0.70	0.78				
C	0.35	0.40	0.45				
D	7.85	8.00	8.15				
E	4.75	4.90	5.05				
E2	3.90						
е		1.27 BSC					
L	13.80	14.00	14.20				

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 1 OF 3				


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D

DATE 05 MAR 2021

FORMED LEAD

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
- 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.

	M.	ILLIMETER	22			
DIM	MIN.	N□M.	MAX.			
Α	3.75	3.90	4.05			
A1	1.28	1.43	1.58			
b	0.38	0.465	0.55			
b2	0.62	0.70	0.78			
С	0.35	0.40	0.45			
D	7.85	8.00	8.15			
Е	4.75	4.90	5.05			
E2	3.90					
O.		2.50 BSC				
L	13.80	14.00	14.20			
L2	13.20	13.60	14.00			
L3	3.00 REF					

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED (
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 3

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT

CASE 29-10 ISSUE D

DATE 05 MAR 2021

2.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	PIN 1. 2.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	
	GATE	PIN 1.	SOURCE DRAIN	PIN 1. 2.	DRAIN	2.	BASE 1 EMITTER BASE 2		CATHODE GATE ANODE
2.	CATHODE & ANODE	2.	MAIN TERMINAL 1 GATE MAIN TERMINAL 2	2.	ANODE 1 GATE CATHODE 2		EMITTER COLLECTOR BASE	STYLE 15: PIN 1. 2. 3.	ANODE 1
2.	ANODE	DINI 1	COLLECTOR BASE EMITTER	PIN 1	ANODE	PIN 1. 2.	GATE ANODE CATHODE	2.	NOT CONNECTED CATHODE ANODE
2.		PIN 1. 2.		PIN 1. 2.	GATE	PIN 1. 2.	EMITTER COLLECTOR/ANODE CATHODE	PIN 1. 2.	MT 1
	V _{CC}		MT	PIN 1. 2.		PIN 1. 2.	NOT CONNECTED ANODE CATHODE	PIN 1. 2.	
		STYLE 32: PIN 1. 2. 3.	BASE COLLECTOR EMITTER	STYLE 33: PIN 1. 2. 3.	RETURN	PIN 1. 2.	INPUT GROUND LOGIC		

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code

A = Assembly Location

L = Wafer Lot Y = Year

W = Work Week

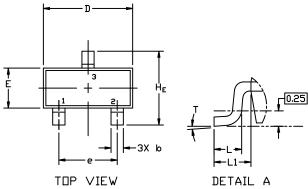
= Pb-Free Package

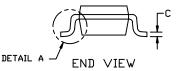
(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 3 OF 3

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.




SOT-23 (TO-236) CASE 318 ISSUE AT

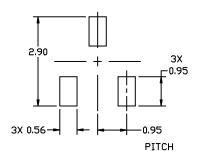
DATE 01 MAR 2023

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M,1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIM	ETERS		INCHES		
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
Ε	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
Т	0*		10°	0*		10°

GENERIC MARKING DIAGRAM*



XXX = Specific Device Code

M = Date Code

■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document F Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-23 (TO-236)		PAGE 1 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

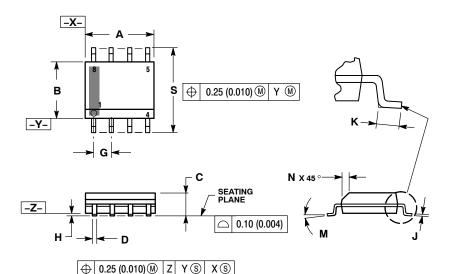
MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318 ISSUE AT

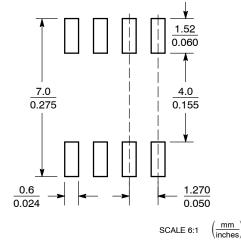
DATE 01 MAR 2023

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE	N	
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 13:	STYLE 14:
PIN 1. ANODE	PIN 1. DRAIN	PIN 1. ANODE		PIN 1. SOURCE	PIN 1. CATHODE
2. ANODE	2. SOURCE	2. CATHODE		2. DRAIN	2. GATE
3. CATHODE	3. GATE	3. CATHODE-ANODE		3. GATE	3. ANODE
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:	STYLE 19:	STYLE 20:
PIN 1. GATE	PIN 1. ANODE	PIN 1. NO CONNECTION	PIN 1. NO CONNECTION	N PIN 1. CATHODE	PIN 1. CATHODE
2. CATHODE	2. CATHODE	2. ANODE	2. CATHODE	2. ANODE	2. ANODE
3. ANODE	3. CATHODE	3. CATHODE	3. ANODE	3. CATHODE-ANODE	3. GATE
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:	STYLE 25:	STYLE 26:
PIN 1. GATE	PIN 1. RETURN	PIN 1. ANODE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE
2. SOURCE	2. OUTPUT	2. ANODE	2. DRAIN	2. CATHODE	2. ANODE
3. DRAIN	3. INPUT	3. CATHODE	3. SOURCE	3. GATE	3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE				

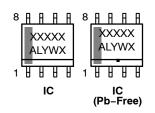
DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-23 (TO-236)		PAGE 2 OF 2


onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 **ISSUE AK**


DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27 BSC		0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
M	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week W

= Pb-Free Package

XXXXXX XXXXXX AYWW AYWW Ŧ \mathbb{H} Discrete **Discrete** (Pb-Free)

XXXXXX = Specific Device Code = Assembly Location Α = Year ww = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER	STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1	STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE
STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE	STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE	STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd	STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE. #1
STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON	STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND	STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN	STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON	STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 7. COLLECTOR, DIE #2 8. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1
STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC	STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE	STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6	STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND	STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT	STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT	STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW TO GND 2. DASIC OFF 3. DASIC SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN
STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1	STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		

DOCUMENT NUMBER:	98ASB42564B Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales