Onsemi

Integrated Relay, Inductive Load Driver

NUD3112

This device is used to switch inductive loads such as relays, solenoids incandescent lamps, and small DC motors without the need of a free-wheeling diode. The device integrates all necessary items such as the MOSFET switch, ESD protection, and Zener clamps. It accepts logic level inputs thus allowing it to be driven by a large variety of devices including logic gates, inverters, and microcontrollers.

Features

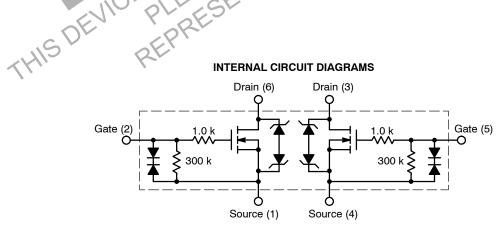
- Provides a Robust Driver Interface Between D.C. Relay Coil and Sensitive Logic Circuits
- Optimized to Switch Relays of 12 V Rail
- Capable of Driving Relay Coils Rated up to 6.0 W at 12 V
- Internal Zener Eliminates the Need of Free–Wheeling Diode
- Internal Zener Clamp Routes Induced Current to Ground for Quieter Systems Operation
- Low V_{DS(ON)} Reduces System Current Drain
- These Devices is Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Telecom: Line Cards, Modems, Answering Machines, FAX
- Computers and Office: Photocopiers, Printers, Desktop Computers
- Consumer: TVs and VCRs, Stereo Receivers, CD Players, Cassette Recorders
- Industrial: Small Appliances, Security Systems, Automated Test Equipment, Garage Door Openers

SC-74 CASE 318F STYLE 7

MARKING DIAGRAM


JW5 = Specific Device Code = Date Code Μ = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

NUD3112DMT1G SC-74 3000 / Tape & Reel	Device	Package	Shipping [†]
	NUD3112DMT1G		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

INTERNAL CIRCUIT DIAGRAMS

MAXIMUM RATINGS (T_J = 25° C unless otherwise specified)

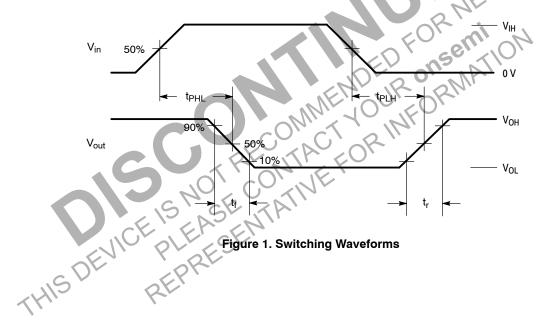
Symbol	Rating	Value	Unit
V _{DSS}	Drain to Source Voltage – Continuous	14	V _{dc}
V _{GS}	Gate to Source Voltage – Continuous	6	V _{dc}
۱ _D	Drain Current – Continuous	500	mA
Ez	Single Pulse Drain-to-Source Avalanche Energy ($T_{Jinitial} = 25^{\circ}C$)	50	mJ
TJ	Junction Temperature	150	°C
T _A	Operating Ambient Temperature	-40 to 85	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
PD	Total Power Dissipation (Note 1) Derating Above 25°C	1.8	mW/°C
PD	Total Power Dissipation (Note 1) Derating Above 25°C	3.0	mW/°C
R _{θJA}	Thermal Resistance Junction-to-Ambient (Note 1)	329	°C/W
ESD	Human Body Model (HBM) According to EIA/JESD22/A114	2000	V

-re exceeded, d Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Mounted onto minimum pad board.

TYPICAL ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)

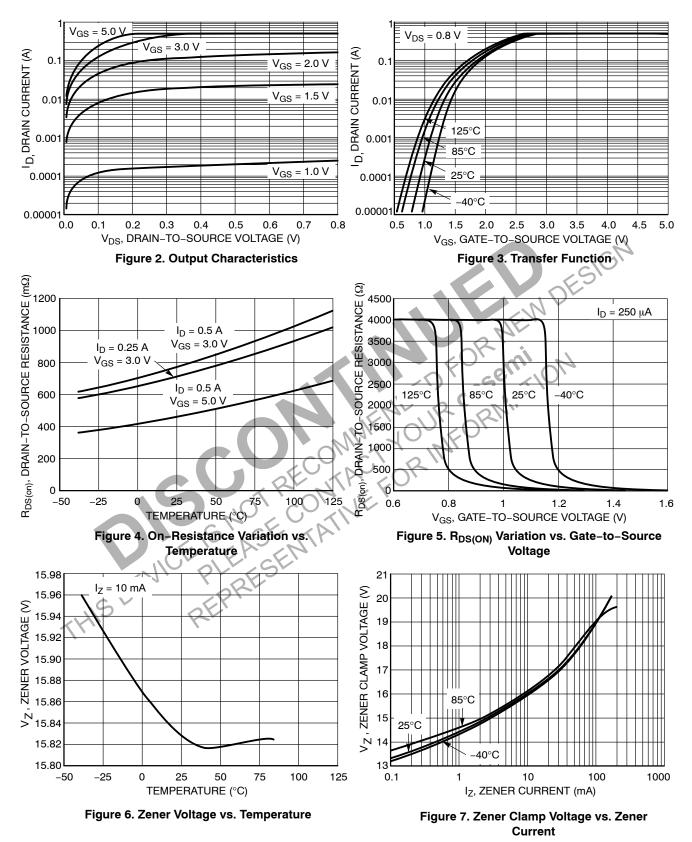
Symbol	Characteristic	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
V _{BRDSS}	Drain to Source Sustaining Voltage (Internally Clamped) (I _D = 10 mA)	14 N	16	17	V	
B _{VGSO}	lg = 1.0 mA	-	-	8	V	
I _{DSS}	Drain to Source Leakage Current $(V_{DS} = 12 \text{ V}, V_{GS} = 0 \text{ V}, T_A = 25^{\circ}\text{C})$ $(V_{DS} = 12 \text{ V}, V_{GS} = 0 \text{ V}, T_A = 85^{\circ}\text{C})$		- -	20 40	μΑ	
I _{GSS}	Gate Body Leakage Current $(V_{GS} = 3.0 \text{ V}, V_{DS} = 0 \text{ V})$ $(V_{GS} = 5.0 \text{ V}, V_{DS} = 0 \text{ V})$			35 65	μΑ	
ON CHARA	CTERISTICS				<u> </u>	
V _{GS(th)}	Gate Threshold Voltage (V _{GS} = V _{DS} , I _D = 1.0 mA) (V _{GS} = V _{DS} , I _D = 1.0 mA, T _A = 85°C)	0.8 0.8	1.2 -	1.4 1.4	V	
R _{DS(on)}	$ Drain to Source On-Resistance \\ (I_D = 250 mA, V_{GS} = 3.0 V) \\ (I_D = 500 mA, V_{GS} = 3.0 V) \\ (I_D = 500 mA, V_{GS} = 5.0 V) \\ (I_D = 500 mA, V_{GS} = 3.0 V, T_A = 85^{\circ}C) \\ (I_D = 500 mA, V_{GS} = 5.0 V, T_A = 85^{\circ}C) \\ $	- - - -	- - - -	1.2 1.3 0.9 1.3 0.9	Ω	
I _{DS(on)}	Output Continuous Current ($V_{DS} = 0.25 \text{ V}, V_{GS} = 3.0 \text{ V}$) ($V_{DS} = 0.25 \text{ V}, V_{GS} = 3.0 \text{ V}, T_A = 85^{\circ}\text{C}$)	300 200	400 -	-	mA	
9FS	Forward Transconductance (V _{OUT} = 12.0 V, I _{OUT} = 0.25 A)	350	490	_	mmhos	

NUD3112

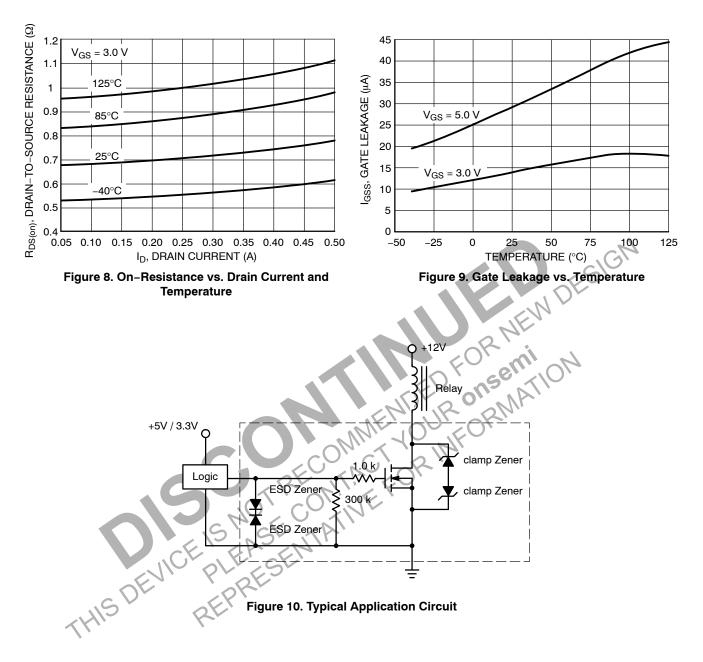

TYPICAL ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)

Symbol	Characteristic	Min	Тур	Max	Unit		
DYNAMIC C	DYNAMIC CHARACTERISTICS						
C _{iss}	Input Capacitance (V _{DS} = 12 V, V _{GS} = 0 V, f = 10 kHz)	-	23	-	pF		
C _{oss}	Output Capacitance (V _{DS} = 12 V, V _{GS} = 0 V, f = 10 kHz)	-	30	-	pF		
C _{rss}	Transfer Capacitance (V _{DS} = 12.0 V, V _{GS} = 0 V, f = 10 kHz)	-	7	_	pF		

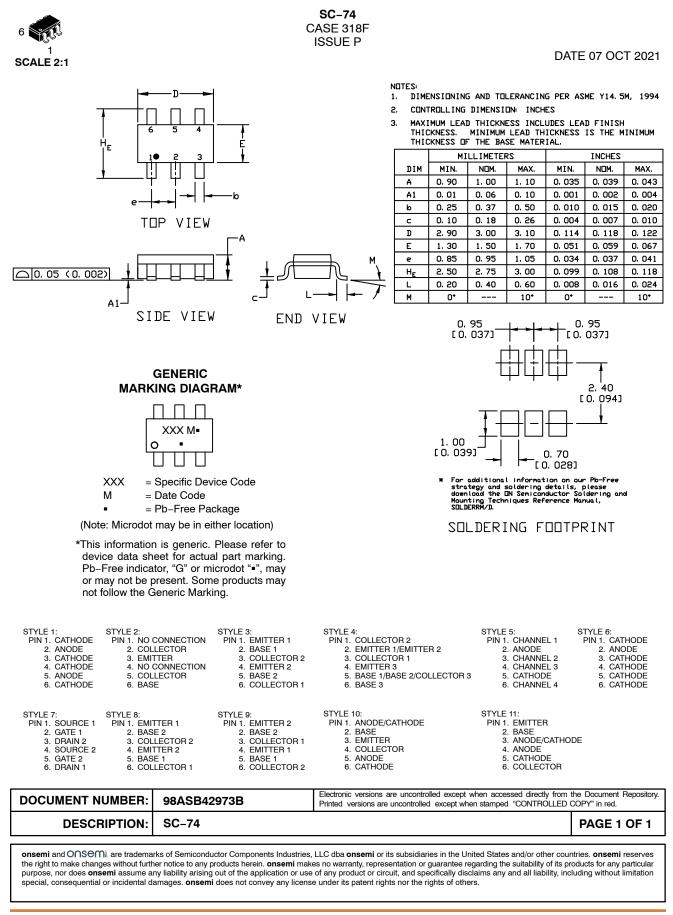
SWITCHING CHARACTERISTICS


Symbol	Characteristic	Min	Тур	Max	Unit
	Propagation Delay Times:				nS
t _{PHL}	High to Low Propagation Delay; Figure 1 (V_{DS} = 12 V, V_{GS} = 5.0 V)	-	21	-	
t _{PLH}	Low to High Propagation Delay; Figure 1 (V _{DS} = 12 V, V _{GS} = 5.0 V)	-	91	-	
	Transition Times:			10.	nS
t _f	Fall Time; Figure 1 (V_{DS} = 12 V, V_{GS} = 5.0 V)		36		
t _r	Rise Time; Figure 1 (V_{DS} = 12 V, V_{GS} = 5.0 V)	-	61	5-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


NUD3112

TYPICAL PERFORMANCE CURVES (T_J = 25°C UNLESS OTHERWISE SPECIFIED)



NUD3112

TYPICAL PERFORMANCE CURVES (T_J = 25°C UNLESS OTHERWISE SPECIFIED) (continued)

onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>