Self Protected High Side Driver with Temperature Shutdown and Current Limit

The NCV8461 is a fully protected High–Side driver that can be used to switch a wide variety of loads, such as bulbs, solenoids and other activators. The device is internally protected from an overload condition by an active current limit and thermal shutdown. A diagnostic output reports OFF state open load conditions as well as thermal shutdown.

Features

- Short Circuit Protection
- Thermal Shutdown with Automatic Restart
- CMOS (3 V / 5 V) Compatible Control Input
- Off State Open Load Detection
- Open Drain Diagnostic Output
- Overvoltage Protection
- Undervoltage Shutdown
- Loss of Ground and Loss of V_D Protection
- ESD Protection
- Reverse Battery Protection (with external resistor)
- Very Low Standby Current
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- This is a Pb–Free Device

Typical Applications

- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial

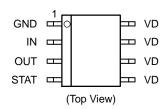
FEATURE SUMMARY

Overvoltage Protection	V _{OV}	41	V
R _{DSon} (max) T _J = 25°C	R _{ON}	350	mΩ
Output Current Limit (typ)	I _{lim}	1.2	А
Operating Voltage Range	V _{OP}	5 – 34	V

ON Semiconductor®

www.onsemi.com

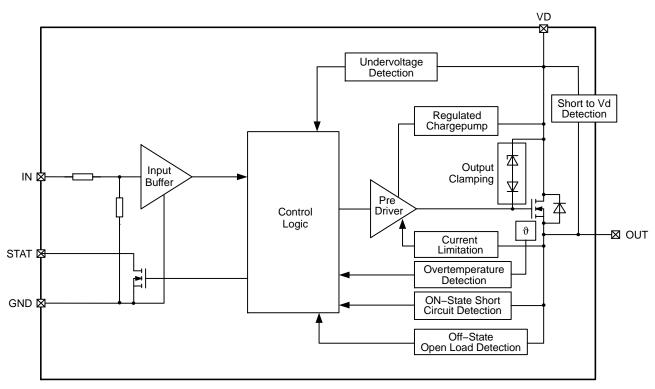
MARKING DIAGRAM



NCV8461 = Specific Device Code A = Assembly Location Y = Year WW = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)


PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8461DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

SO8 PACKAGE PIN DESCRIPTION

Pin #	Symbol	Description
1	GND	Ground
2	IN	Logic Level Input
3	OUT	Output
4	STAT	Status Output
5	VD	Supply Voltage
6	V _D	Supply Voltage
7	V _D	Supply Voltage
8	VD	Supply Voltage

Table 1. MAXIMUM RATINGS

		Va	lue	
Rating	Symbol	Min	Max	Unit
DC Supply Voltage (Note 1)	V _D	-16	40	V
Peak Transient Input Voltage (Note 1) (Load Dump 38 V, V _D = 14 V, ISO7637–2 pulse5)	V _{peak}		52	V
Input Voltage	V _{in}	-10	16	V
Input Current	l _{in}	-5	5	mA
Output Current (Note 1)	l _{out}	-	Internally Limited	А
Status Current	I _{status}	-5	5	mA
Power Dissipation Tc = 25°C (Note 1)	P _{tot}	1	.5	W
Electrostatic Discharge (Note 1) (HBM Model 100 pF / 1500 Ω) Input All Other Pins		±1.5 ±5		DC kV kV
Single Pulse Inductive Load Switching Energy (Note 1) V_D = 13.5 V; I _L = 0.5 A, T _{Jstart} = 150°C	E _{AS}	-	300	mJ
Operating Junction Temperature	TJ	-40	+150	°C
Storage Temperature	T _{storage}	-55	+150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Not subjected to production testing

Table 2. THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max. Value	Units
Thermal Resistance (Note 2) Junction–to–Soldering Point Junction–to–Ambient (6 cm square pad size, FR–4, 2 oz Cu)	R _{thJS} R _{thJA}	31 84	°C/W

2. Reverse Output current has to be limited by the load to stay within absolute maximum ratings and thermal performance. See spec table and page 6 for further reverse battery information.

				Value		
Rating	Symbol	Conditions	Min	Тур	Max	Unit
Operating Supply Voltage	V _D		5	-	34	V
Undervoltage Shutdown	V _{UV}				5	V
Undervoltage Restart	V _{UV_Res}				5.5	V
Overvoltage Protection	V _{OV}	I _D = 4 mA	41			V
On Resistance	R _{ON}	$ I_{out} = 0.3 \text{ A}; 6 \text{ V} < \text{V}_{\text{D}} < 40 \text{ V}, \text{T}_{\text{J}} = 25^{\circ}\text{C} $ $ I_{out} = 0.3 \text{ A}; 6 \text{ V} < \text{V}_{\text{D}} < 40 \text{ V}, \text{T}_{\text{J}} = 150^{\circ}\text{C} $		250 450	350 700	mΩ
Standby Current	Ι _D	Off State, $V_{in} = V_{out} = 0 V$ On State; $V_{in} = 5 V$, $I_{out} = 0 A$		13 1	35 1.7	μA mA
Output Leakage Current	I _{L(off)}				12	μΑ
NPUT CHARACTERISTICS						
Input Voltage – Low	V _{in_low}				0.8	V
Input Voltage – High	V _{in_high}		2.2			V
Input Hysteresis Voltage	V _{hyst}			0.3		V
Off State Input Current	l _{in_OFF}	V _{in} = 0.7 V	1		10	μΑ
On State Input Current	I _{in_ON}	V _{in} = 5.0 V	1		10	μΑ
Input Resistance (Note 3)	R _I		1.5	3.5		KΩ
Input Clamp Voltage	V _{in_cl}	I _{in} = 1 mA I _{in} = -1 mA	14 –18	16 –16	18 –14	V
SWITCHING CHARACTERISTICS	S					
Turn-On Delay Time	t _{d_on}	to 90% V _{out} , R _L = 47 Ω			140	μs
Turn-Off Delay Time	t _{d_off}	to 10% V _{out} , R _L = 47 Ω			170	μs
Slew Rate On	dV _{out} /dt _{on}	10% to 30% Vout, R _L = 47 Ω			2	V / με
Slew Rate Off	dV _{out} /dt _{off}	70% to 40% Vout, R _L = 47 Ω			2	V / μs
REVERSE BATTERY (Note 3)						
Reverse Battery	-V _D	Requires a 150 Ω Resistor in GND Connection			32	V
Forward Voltage	V _F	$T_{J} = 150^{\circ}C, I_{S} = 200 \text{ mA}$		0.6		V
STATUS PIN CHARACTERISTIC	S					
Status Output Voltage Low	V _{stat_low}	$I_{stat} = 1.6 \text{ mA}, T_J = -40^{\circ}\text{C} \text{ to } 25^{\circ}\text{C}$ $I_{stat} = 1.6 \text{ mA}, T_J = 150^{\circ}\text{C} \text{ (Note 3)}$			0.4 0.6	V
Status Leakage Current	I _{stat_leakage}	V _{stat} = 5 V			10	μΑ
Status Invalid Time After Posit- ive Input Slope	T _{d(STAT)}			300	700	μs
Status Clamp Voltage	V _{stat_cl}	$I_{stat} = 1 \text{ mA}$ $I_{stat} = -1 \text{ mA}$		10 -1.4		V
PROTECTION FUNCTIONS (Note	e 4)				1	1
Terrer eventure Chutdeure (Nete 2)	-			475	L	

Temperature Shutdown (Note 3)	T _{SD}	150	175	200	°C	
Temperature Shutdown Hyster- esis (Note 3)	T _{SD_hyst}		10		°C	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Not subjected to production testing
4. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used

together with a proper hardware/software strategy. If the devices operates under abnormal conditions this hardware/software solutions must limit the duration and number of activation cycles. AEC Q100-12 results available upon request.

Table 3. ELECTRICAL CHARACTERISTICS (V_D = 13.5 V; $-40^{\circ}C < T_J < 150^{\circ}C$ unless otherwise specified)

			Value			
Rating	Symbol	Conditions	Min	Тур	Max	Unit
PROTECTION FUNCTIONS (Note 4)						
Output Current Limit Initial Peak	l _{lim}	$T_J = -40^{\circ}C, V_D = 20 V (Note 3)$ $T_J = 25^{\circ}C$ $T_J = 150^{\circ}C (Note 3)$	0.7	1.2	2	A
Repetitive Short Circuit Current Limit	I _{lim(SC)}	T _J = T _{Jt} (Note 3)		1		A
Switch Off Output Clamp Volt- age	V _{clamp}	I _D = 4 mA, V _{in} = 0 V	V _D - 41	V _D – 47		V
DIAGNOSTICS CHARACTERIST	ICS					

Short Circuit Detection Voltage	V _{OUT(SC)}			2.8		V
Openload Off State Detection Threshold	V _{OL}	V _{in} = 0 V	1.5		3.5	V
Openload Detection Current	I _{L(OL)}			5		μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Not subjected to production testing

 To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper hardware/software strategy. If the devices operates under abnormal conditions this hardware/software solutions must limit the duration and number of activation cycles. AEC Q100-12 results available upon request.

Table 4. STATUS PIN TRUTH TABLE

Conditions	Input	Output	Status
Normal Operation	L	L	Н
	Н	Н	Н
Short Circuit to GND	L	L	Н
	Н	L*	L
Short to V _{D (OFF State)}	L	Н	L
	Н	Н	Н
Current Limitation	L	L	Н
	Н	H**	Н
Overtemperature	L	L	Н
	Н	L	L
OFF State Open Load	L	Н	L
	Н	Н	Н

* Output = "L"; V_{OUT} < 2 V typ. ** Output = "H"; V_{OUT} > 2 V typ.

REVERSE BATTERY PROTECTION

The NCV8461 provides reverse battery protection up to 32 V. This protection requires a Resistor in the GND path. The recommended GND resistor is 150 Ω , but a variety of resistor values can be chosen for this purpose. The graph below shows the considerations and constraints for selection of the GND resistor. Figure 2 shows the power dissipation in the GND resistor during a 32 V reverse battery event on the left axis, while the right axis shows the voltage drop

across the GND resistor while in normal operation. The far right side of the graph is grayed out to indicate that the voltage drop across the resistor is too high, and the part will not be able to turn on with a standard 5 V on the input pin. Selection of the optimal GND resistor requires balancing the power dissipation considerations while in a reverse battery event, with the turn on capability of the input signal during normal operation.

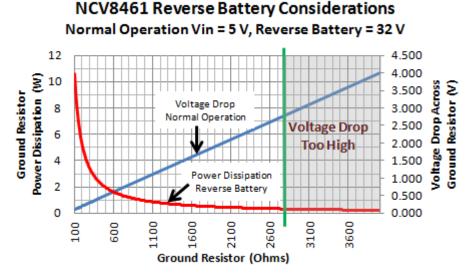
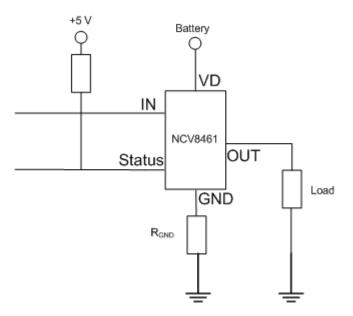
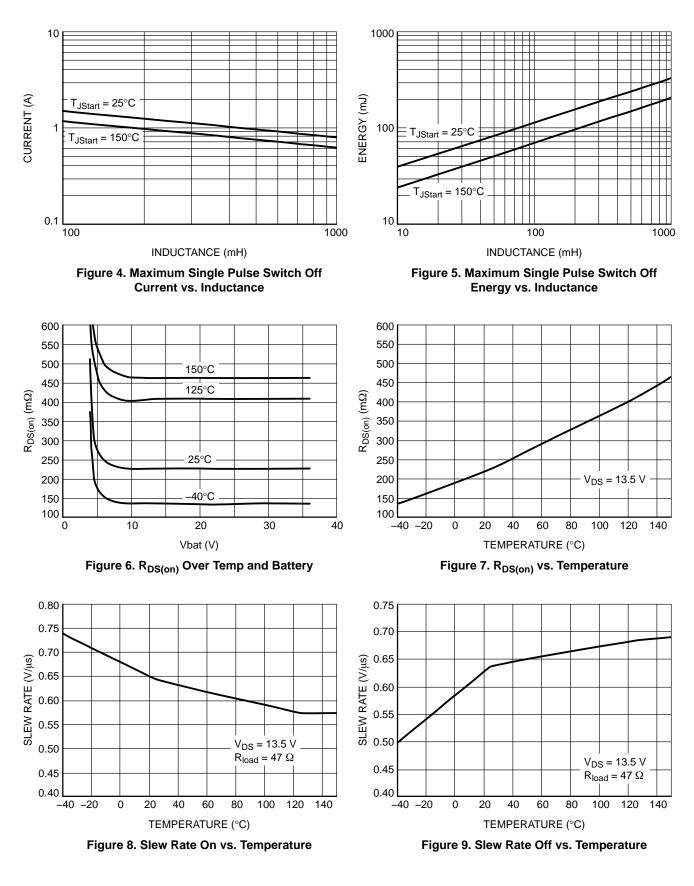




Figure 2. Reverse Battery Considerations

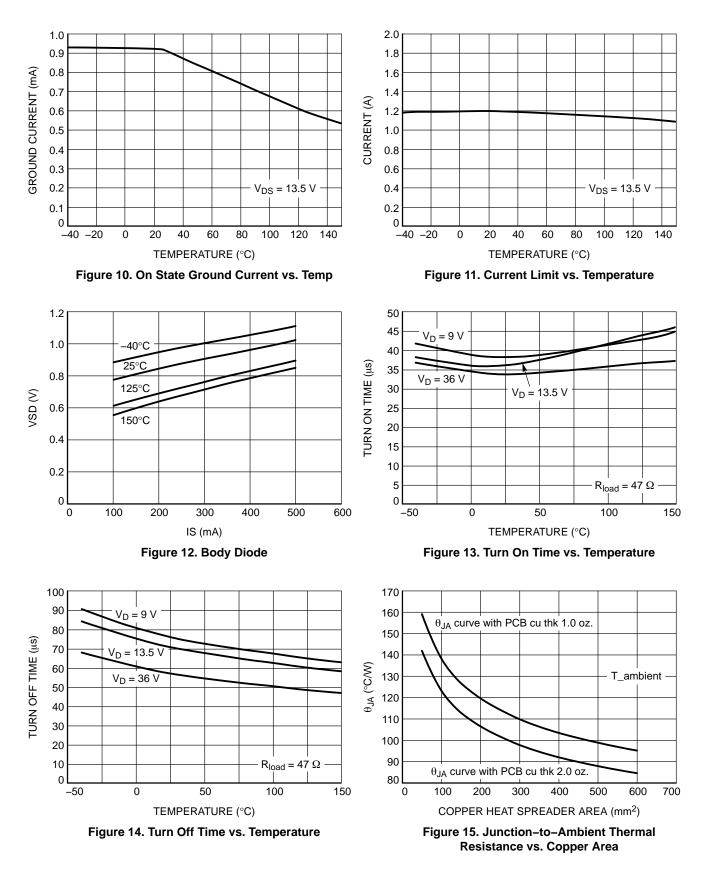


Figure 3. Reverse Battery Protection Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

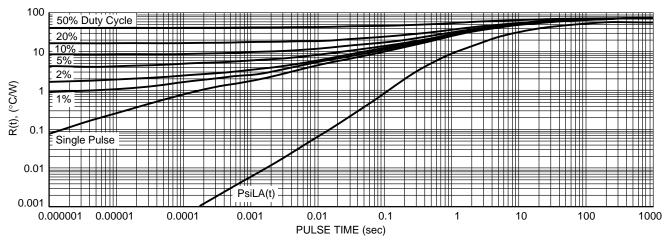
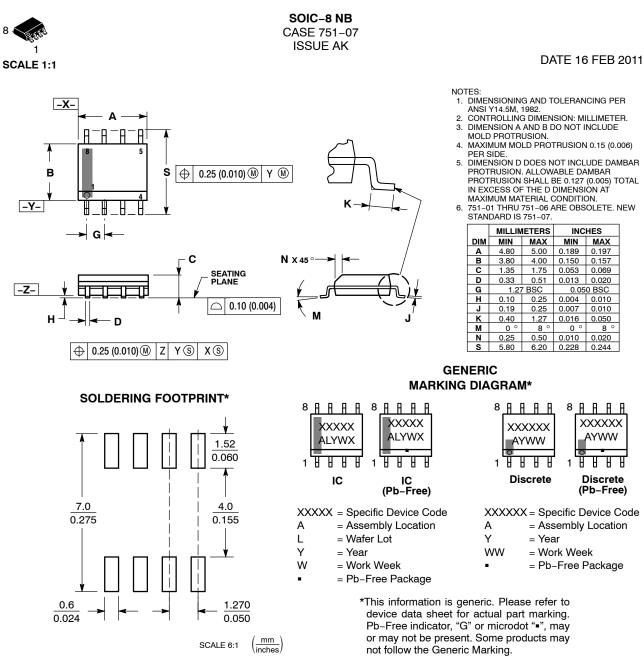


Figure 16. Junction to Ambient Transient Thermal Impedance (600 mm² Copper Area)


ISO 7637-2:2011(E)	Test Severity Leve	els, 13.5 V System	Delays and	# of Pulses or Test	Pulse / Burst Rep.
Test Pulse	III	IV	Impedance	Time	Time
1	-112	-150	2 ms, 10 Ω	500 pulses	0.5 s
2a	+55	+112	$0.05~\text{ms},2~\Omega$	500 pulses	0.5 s
3a	-165	-220	0.1 μs, 50 Ω	1 h	100 ms
3b	+112	+150	0.1 μs, 50 Ω	1 h	100 ms

ISO 7637-2:2011 (E) PULSE TEST RESULTS

ISO 7637-2:2011(E) Test Pulse	Test Results	
	III	IV
1	С	С
2a	С	E
За	С	С
3b	С	С

Class	Functional Status
С	One or more functions of a device do not perform as designed during exposure but return automatically to normal operation after exposure is removed.
E	One or more functions of a device do not perform as designed during and after exposure and cannot be returned to proper operation without replacing the device.

onsemi

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2		
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR 3. 4. EMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. COLLECTOR, #2 4 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3 P-SOURCE P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE ANODE 2. SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. 8. CATHODE STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 COMMON ANODE/GND 5. 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4 SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. DRAIN, #2 4. GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. **MIRROR 1** STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT 2 OVI 0 UVLO З. 4. INPUT+ 5. 6. SOURCE SOURCE SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 З. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16 EMITTER, DIE #1 PIN 1. 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2	

SOURCE 1/DRAIN 2

7.

8. GATE 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or others.

7.

8

COLLECTOR, #1

COLLECTOR, #1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales