Quad 2-Channel Multiplexer

With 5 V-Tolerant Inputs

The MC74LVX157 is an advanced high speed CMOS quad 2-channel multiplexer. The inputs tolerate voltages up to 7.0 V, allowing the interface of 5.0 V systems to 3.0 V systems.

It consists of four 2-input digital multiplexers with common select (S) and enable (\overline{E}) inputs. When \overline{E} is held High, selection of data is inhibited and all the outputs go Low.

The select decoding determines whether the I0 n or I1 n inputs get routed to the corresponding Z n outputs.

Features

- High Speed: $t_{PD} = 5.1 \text{ ns (Typ)}$ at $V_{CC} = 3.3 \text{ V}$
- Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Low Noise: $V_{OLP} = 0.5 \text{ V (Max)}$
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance:

Human Body Model > 2000 V; Machine Model > 200 V

• These Devices are Pb-Free and are RoHS Compliant

PIN NAMES

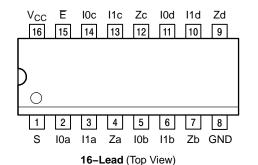
Pins	Function
I0n	Source 0 Data Inputs
l1n	Source 1 Data Inputs
Ē	Enable Input
s	Select Input
Zn	Outputs

TRUTH TABLE

	INP	UTS	OUTPUT		
E	S	I0n	l1n	Zn	
Н	Х	Х	Х	L	
L	Н	Х	L	L	
L	Н	Х	Н	Н	
L	L	L	Х	L	
L	L	Н	Х	Н	

 $\rm H=High\ Voltage\ Level;\ L=Low\ Voltage\ Level;\ X=High\ or\ Low\ Voltage\ Level\ ;\ For\ I_{CC}\ Reasons\ DO\ NOT\ FLOAT\ Inputs$

ON Semiconductor®


http://onsemi.com



SOIC-16 D SUFFIX CASE 751B TSSOP-16 DT SUFFIX CASE 948F

PIN ASSIGNMENT

MARKING DIAGRAMS

SOIC-16

1

TSSOP-16

LVX157 = Specific Device Code A = Assembly Location

WL, L = Wafer Lot
Y = Year
WW, W = Work Week
G or = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

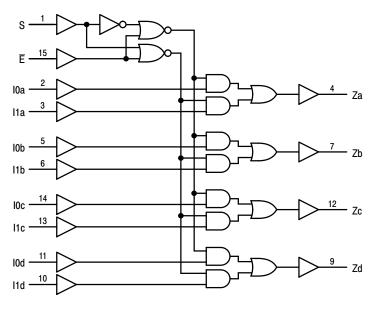


Figure 1. Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
V _{in}	DC Input Voltage	-0.5 to +7.0	V
V _{out}	DC Output Voltage	–0.5 to V _{CC} +0.5	V
I _{IK}	Input Diode Current	-20	mA
I _{OK}	Output Diode Current	±20	mA
l _{out}	DC Output Current, per Pin	±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	±50	mA
P _D	Power Dissipation	180	mW
T _{stg}	Storage Temperature	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage	2.0	3.6	V
V _{in}	DC Input Voltage	0	5.5	V
V _{out}	DC Output Voltage	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-40	+85	°C
Δt/ΔV	Input Rise and Fall Time	0	100	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

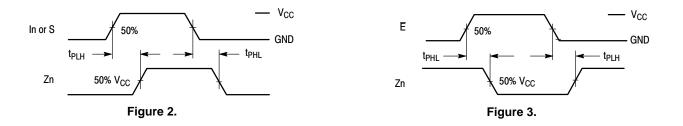
			V _{CC}	7	Γ _A = 25°C	;	$T_A = -40$	to 85°C	
Symbol	Parameter	Test Conditions	V	Min	Тур	Max	Min	Max	Unit
V _{IH}	High-Level Input Voltage		2.0 3.0 3.6	1.5 2.0 2.4	- - -	- - -	1.5 2.0 2.4	- - -	V
V _{IL}	Low-Level Input Voltage		2.0 3.0 3.6	- - -	- - -	0.5 0.8 0.8	- - -	0.5 0.8 0.8	V
V _{OH}	High-Level Output Voltage (V _{in} = V _{IH} or V _{IL})	$I_{OH} = -50\mu A$ $I_{OH} = -50\mu A$ $I_{OH} = -4mA$	2.0 3.0 3.0	1.9 2.9 2.58	2.0 3.0	- - -	1.9 2.9 2.48	- - -	V
V _{OL}	Low-Level Output Voltage (V _{in} = V _{IH} or V _{IL})	$\begin{split} I_{OL} &= 50 \mu A \\ I_{OL} &= 50 \mu A \\ I_{OL} &= 4 m A \end{split}$	2.0 3.0 3.0	- - -	0.0 0.0 -	0.1 0.1 0.36	- - -	0.1 0.1 0.44	V
l _{in}	Input Leakage Current	V _{in} = 5.5V or GND	3.6	-	-	±0.1	-	±1.0	μΑ
I _{CC}	Quiescent Supply Current	$V_{in} = V_{CC}$ or GND	3.6	-	_	4.0	_	40.0	μΑ

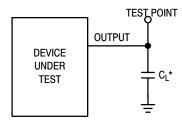
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $t_f = t_f = 3.0 \text{ns}$)

				T _A = 25°C			$T_A = -40$		
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay, Input to Output	V _{CC} = 2.7V	$C_L = 15pF$ $C_L = 50pF$	-	6.6 9.1	12.5 16.0	1.0 1.0	15.5 19.0	ns
		$V_{CC} = 3.3 \pm 0.3 V$	$C_L = 15pF$ $C_L = 50pF$	-	5.1 7.6	7.9 11.4	1.0 1.0	9.5 13.0	
t _{PLH} , t _{PHL}	Propagation Delay, S to Zn	V _{CC} = 2.7V	$C_L = 15pF$ $C_L = 50pF$	-	8.9 11.4	16.9 20.4	1.0 1.0	20.5 24.0	ns
		$V_{CC} = 3.3 \pm 0.3 V$	$C_L = 15pF$ $C_L = 50pF$	-	7.0 9.5	11.0 14.5	1.0 1.0	13.0 16.5	
t _{PLH} , t _{PHL}	Propagation Delay, E to Zn	V _{CC} = 2.7V	$C_L = 15pF$ $C_L = 50pF$	-	9.1 11.6	17.6 21.1	1.0 1.0	20.5 24.0	ns
		$V_{CC} = 3.3 \pm 0.3 V$	$C_L = 15pF$ $C_L = 50pF$	-	7.2 9.7	11.5 15.0	1.0 1.0	13.5 17.0	
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 1)	$V_{CC} = 2.7V$ $V_{CC} = 3.3 \pm 0.3V$	$C_L = 50pF$ $C_L = 50pF$	-	_	1.5 1.5	- -	1.5 1.5	ns

Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
 The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.


CAPACITIVE CHARACTERISTICS


		T _A = 25°C		T _A = −40 to 85°C			
Symbol	Parameter	Min	Тур	Max	Min	Max	Unit
Cin	Input Capacitance	-	4	10	-	10	pF
C _{PD}	Power Dissipation Capacitance (Note 2)	1	20	-	ı	-	pF

C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/4 (per bit). C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

$\textbf{NOISE CHARACTERISTICS} \text{ (Input } t_{\text{f}} = t_{\text{f}} = 3.0 \text{ns, } C_{\text{L}} = 50 \text{pF, } V_{\text{CC}} = 3.3 \text{V, Measured in SOIC Package)}$

			T _A = 25°C		
Symbol	Characteristic	Тур	Max	Unit	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	0.3	0.5	V	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-0.3	-0.5	V	
V _{IHD}	Minimum High Level Dynamic Input Voltage	_	2.0	V	
V_{ILD}	Maximum Low Level Dynamic Input Voltage	_	0.8	V	

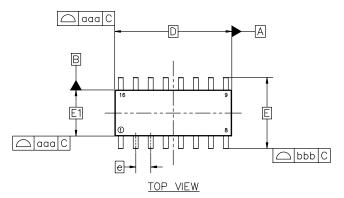
*Includes all probe and jig capacitance

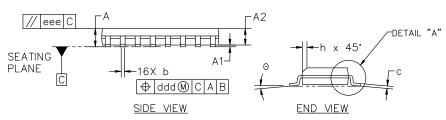
Figure 4. Propagation Delay Test Circuit

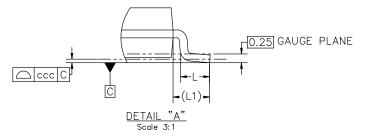
ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LVX157DR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74LVX157DTR2G	TSSOP-16 (Pb-Free)	2500 Tape & Reel

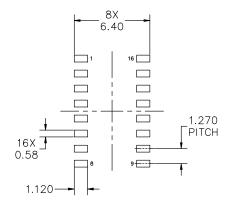
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.




SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M


DATE 18 OCT 2024

NOTES:

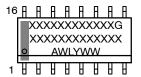

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
- 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE.
- 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.

MILLIMETERS							
DIM	MIN NOM MAX						
А	1.35	1.55	1.75				
A1	0.10	0.18	0.25				
A2	1.25	1.37	1.50				
b	0.35	0.42	0.49				
С	0.19	0.22	0.25				
D	9.90 BSC						
E	6.00 BSC						
E1	3.90 BSC						
е	1.27 BSC						
h	0.25		0.50				
L	0.40	0.83	1.25				
L1	1.05 REF						
Θ	0 7.						
TOLERAN	CE OF FORM AND POSITION						
aaa	0.10						
bbb	0.20						
ccc		0.10					
ddd		0.25					
eee		0.10					

RECOMMENDED MOUNTING FOOTPRINT

*FOR ADDITIONAL INFORMATION ON OUR
PB-FREE STRATEGY AND SOLDERING DETAILS,
PLEASE DOWNLOAD THE onsemi SOLDERING
AND MOUNTING TECHNIQUES REFERENCE
MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	SOIC-16 9.90X3.90X1.37 1.27P			


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.37 1.27P CASE 751B

ISSUE M

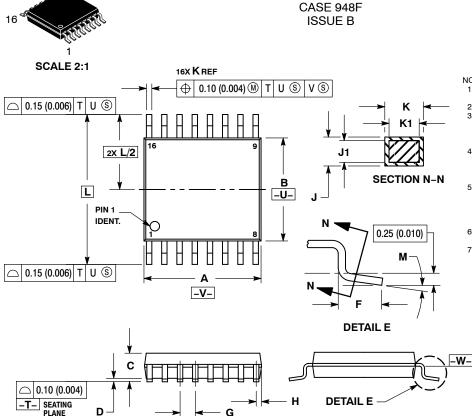
DATE 18 OCT 2024

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code A = Assembly Location

WL = Wafer Lot
 Y = Year
 WW = Work Week
 G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.


STYLE 1:		STYLE 2:		STYLE 3:	S	STYLE 4:	
PIN 1.	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE #1
2.	BASE	2.	ANODE	2.	BASE, #1	2.	COLLECTOR, #1
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	BASE, #3
12.	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	EMITTER, #3
13.	BASE	13.	CATHODE	13.	COLLECTOR, #4	13.	BASE, #2
14.	COLLECTOR	14.		14.	BASE, #4	14.	EMITTER, #2
15.	EMITTER		ANODE	15.		15.	
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE #1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		
3.	DRAIN, #2	3.	CATHODE	3.)	
4.	DRAIN, #2	4.		4.			
5.	DRAIN, #3	5.		5.			
6.	DRAIN, #3	6.		6.	COMMON DRAIN (OUTPUT)		
7.	DRAIN, #4		CATHODE	7.	COMMON DRAIN (OUTPUT))	
8.	DRAIN, #4	8.		8.	SOURCE P-CH		
9.	GATE, #4	9.		9.	SOURCE P-CH		
10.	SOURCE, #4	10.		10.			
11.	GATE, #3		ANODE	11.			
12.	SOURCE, #3	12	ANODE	12.)	
13.	GATE, #2	13.	ANODE	13.			
14.	GATE, #2 SOURCE, #2	13. 14.	ANODE	14.	COMMON DRAIN (OUTPUT)		
14. 15.	GATE, #2 SOURCE, #2 GATE, #1	13. 14. 15.	ANODE ANODE	14. 15.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
14.	GATE, #2 SOURCE, #2	13. 14.	ANODE	14.	COMMON DRAIN (OUTPUT)		

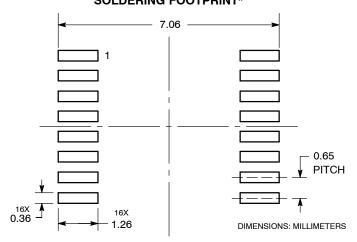
DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1.27P		PAGE 2 OF 2	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 19 OCT 2006

TSSOP-16 WB

NOTES:


- DIMENSIONING AND TOLERANCING PER
 ANSI V14 5M 1982
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
- EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- INTERLEAD FLASH ON PHOTHOSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
۲	6.40 BSC		0.252 BSC	
М	00	00	00	00

RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code A = Assembly Location

L = Wafer Lot Y = Year W = Work Week G or = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales