

Quad 2-Channel Multiplexer with 3-State Outputs MC74VHC257

The MC74VHC257 is an advanced high speed CMOS quad 2-channel multiplexer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

It consists of four 2-input digital multiplexers with common select (S) and enable (\overline{OE}) inputs. When (\overline{OE}) is held High, selection of data is inhibited and all the outputs go Low.

The select decoding determines whether the A or B inputs get routed to the corresponding Y outputs.

The inputs tolerate voltages up to 7 V, allowing the interface of 5 V systems to 3 V systems.

- High Speed: $t_{PD} = 4.1 \text{ ns (Typ)}$ at $V_{CC} = 5.0 \text{ V}$
- Low Power Dissipation: $I_{CC} = 4.0 \,\mu\text{A}$ (Max) at $T_{A} = 25^{\circ}\text{C}$
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2.0 V to 5.5 V Operating Range
- Low Noise: V_{OLP} = 0.8 V (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- Chip Complexity: FETs = 100; Equivalent Gates = 25
- These Devices are Pb-Free and are RoHS Compliant

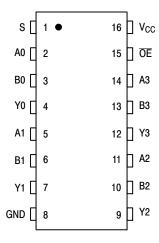
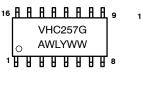
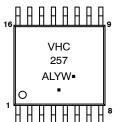


Figure 1. Pin Assignment

1




SO-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

MARKING DIAGRAM

A = Assembly Location

L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G or = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74VHC257DR2G	SO-16	2500 / Tape & Reel
MC74VHC257DTR2G	TSSOP-16	2500 / Tape & Reel

DISCONTINUED (Note 1)

MC74VHC257DG	SO-16	48 Units / Tube	
MC74VHC257DTG	TSSOP-16	96 Units / Tube	

- †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
- DISCONTINUED: This device is not recommended for new design. Please contact your onsemi representative for information. The most current information on this device may be available on www.onsemi.com.

MC74VHC257

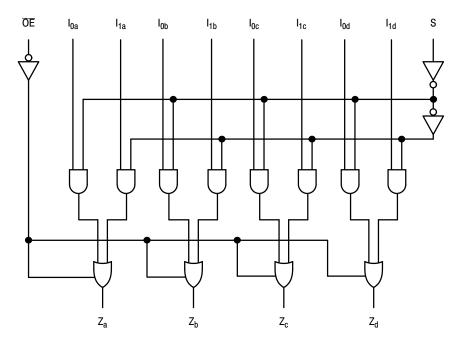


Figure 2. Expanded Logic Diagram

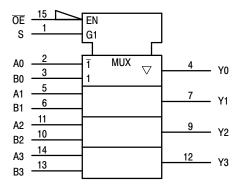


Figure 3. IEC Logic Symbol

FUNCTION TABLE

Inp	Outputs		
OE	s	Y0 - Y3	
Н	Х	Z	
L	L	A0-A3	
L	Н	B0-B3	

A0 - A3, B0 - B3 = the levels of the respective Data-Word Inputs.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

MC74VHC257

MAXIMUM RATINGS

Symbol	Pa	rameter	Value	Unit
V _{CC}	Positive DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	Digital Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage		-0.5 to V _{CC} +0.5	V
I _{IK}	Input Diode Current		-20	mA
I _{OK}	Output Diode Current		± 20	mA
I _{OUT}	DC Output Current, per Pin		± 25	mA
Icc	DC Supply Current, V _{CC} and GND Pins		± 75	mA
P _D	Power Dissipation in Still Air	SOIC Package TSSOP	200 180	mW
T _{STG}	Storage Temperature Range		-65 to +150	°C
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	>2000 >200 >2000	V
I _{LATCHUP}	Latchup Performance	Above V _{CC} and Below GND at 125°C (Note 4)	±300	mA
θ_{JA}	Thermal Resistance, Junction-to-Ambie	ent SOIC Package TSSOP	143 164	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1 Tested to EIA/JESD22-A114-A
- 2 Tested to EIA/JESD22-A115-A
- 3 Tested to JESD22-C101-A
- 4 Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics			Max	Unit
V _{CC}	DC Supply Voltage		2.0	5.5	V
V _{IN}	DC Input Voltage			5.5	V
V _{OUT}	DC Output Voltage			V _{CC}	V
T _A	Operating Temperature Range, all Package Types			125	°C
t _r , t _f	Input Rise or Fall Time	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0	100 20	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

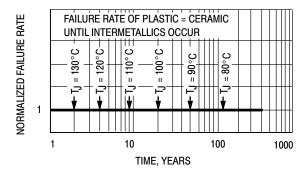


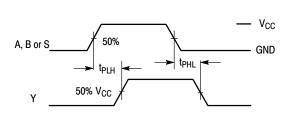
Figure 4. Failure Rate vs. Time Junction Temperature

MC74VHC257

DC CHARACTERISTICS (Voltages Referenced to GND)

			V _{CC}	٦	$T_A = 25^{\circ}C$		T _A ≤ 85°C		$-55^{\circ}C \leq T_{A} \leq 125^{\circ}C$		
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Minimum High-Level		2.0	1.5			1.5	1.5	1.5		V
	Input Voltage		3.0 to 5.5	V _{CCX} 0.7			V _{CCX} 0.7	V _{CCX} 0.7	V _{CCX} 0.7		
V_{IL}	Maximum Low-Level		2.0			0.5		0.5		0.5	V
	Input Voltage		3.0 to 5.5			V _{CCX} 0.3		V _{CCX} 0.3		V _{CCX} 0.3	
V _{OH}	Maximum High-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu\text{A}$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$	3.0 4.5	2.58 3.94			2.48 3.8		2.34 3.66		
V _{OL}	Maximum Low-Level Output Voltage	$V_{IN} = V_{IH}$ or V_{IL} $I_{OL} = 50 \mu A$	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{IN} = V_{IH}$ or V_{IL} $I_{OH} = 4$ mA $I_{OH} = 8$ mA	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	
I _{IN}	Input Leakage Current	V _{IN} = 5.5 V or GND	0 to 5.5			±0.1		±1.0		±1.0	μΑ
I _{OZ}	Maximum 3-State Leakage Current	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = V_{CC}$ or GND	5.5			±0.25		±2.5		±2.5	μΑ
I _{CC}	Maximum Quiescent Supply Current (per package)	$V_{IN} = V_{CC}$ or GND	5.5			4.0		40.0		40.0	μΑ

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ns}$)


				Т	A = 25°	С	T _A = ≤	85°C	-55°C ≤ T	_A ≤ 125°C	
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	C _L = 15 pF C _L = 50 pF		5.8 8.3	9.3 12.8	1.0 1.0	11.0 14.5	1.0 1.0	11.0 14.5	ns
	A or B to Y	$V_{CC} = 5.0 \pm 0.5 \text{ V}$	$C_L = 15 pF$ $C_L = 50 pF$		3.6 5.1	5.9 7.9	1.0 1.0	7.0 9.0	1.0 1.0	7.0 9.0	
t _{PLH} , t _{PHL}	Maximum Propagation Delay	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	$C_L = 15 pF$ $C_L = 50 pF$		7.0 9.5	11.0 14.5	1.0 1.0	13.0 16.5	1.0 1.0	13.0 16.5	ns
	S to Y	$V_{CC} = 5.0 \pm 0.5 \text{ V}$	$C_L = 15 pF$ $C_L = 50 pF$		4.0 5.5	6.8 8.8	1.0 1.0	8.0 10.0	1.0 1.0	8.0 10.0	
t _{PZL} , t _{PZH}	Maximum Output Enable Time	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $R_L = 1 \text{ k}\Omega$			6.7 9.2	10.5 14.0	1.0 1.0	12.5 16.0	1.0 1.0	12.5 16.0	ns
	OE to Y	$V_{CC} = 5.0 \pm 0.5 \text{ V}$ $R_L = 1 \text{ k}\Omega$			3.6 5.1	6.8 8.8	1.0 1.0	8.0 10.0	1.0 1.0	8.0 10.0	
t _{PLZ} , t _{PHZ}	Maximum Output Disable Time	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $R_L = 1 \text{ k}\Omega$	C _L = 50 pF		12.0	15.0	1.0	16.0	1.0	17.5	ns
	OE to Y	$V_{CC} = 5.0 \pm 0.5 \text{ V}$ $R_L = 1 \text{ k}\Omega$	C _L = 50 pF		5.7	13.0	1.0	14.0	1.0	15.0	
C _{IN}	Maximum Input Capacitance				4	10		10		10	pF

		Typical @ 25°C, V _{CC} = 5.0V	
C_{PD}	Power Dissipation Capacitance (Note 5)	20	pF

^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

NOISE CHARACTERISTICS (Input t_r = t_f = 3.0 ns, C_L = 50 pF, V_{CC} = 5.0 V)

		T _A = 25°C		
Symbol	Characteristic	Тур	Max	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	0.3	0.8	٧
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}		- 0.8	V
V _{IHD}	Minimum High Level Dynamic Input Voltage		3.5	V
V _{ILD}	Maximum Low Level Dynamic Input Voltage		1.5	V

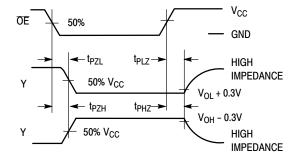
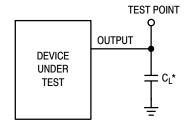
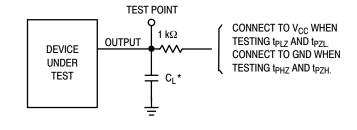




Figure 5. Switching Waveform

Figure 6. Switching Waveform

*Includes all probe and jig capacitance

*Includes all probe and jig capacitance

Figure 7. Test Circuit

Figure 8. Test Circuit

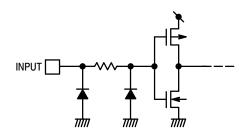
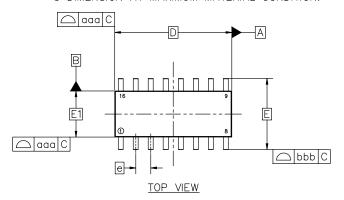
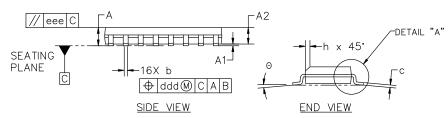
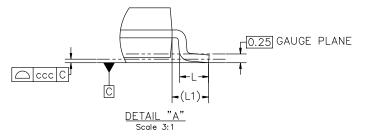


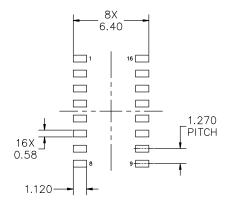
Figure 9. Input Equivalent Circuit




SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M


DATE 18 OCT 2024

NOTES:

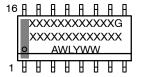

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
- 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE.
- 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.

MILLIMETERS						
DIM	MIN	MAX				
А	1.35	1.55	1.75			
A1	0.10	0.18	0.25			
A2	1.25	1.37	1.50			
b	0.35	0.42	0.49			
С	0.19	0.22	0.25			
D		9.90 BSC				
E		6.00 BSC				
E1		3.90 BSC				
е		1.27 BSC				
h	0.25		0.50			
L	0.40	0.83	1.25			
L1		1.05 REF				
Θ	0.		7.			
TOLERAN	CE OF FC	RM AND	POSITION			
aaa	0.10					
bbb	0.20					
ccc	0.10					
ddd		0.25	·			
eee		0.10				

RECOMMENDED MOUNTING FOOTPRINT

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE onsemi SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	.27P	PAGE 1 OF 2			


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.37 1.27P CASE 751B

ISSUE M

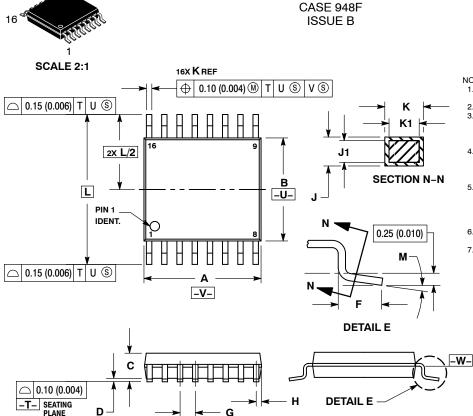
DATE 18 OCT 2024

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code A = Assembly Location

WL = Wafer Lot
 Y = Year
 WW = Work Week
 G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.


STYLE 1:		STYLE 2:		STYLE 3:	S	TYLE 4:	
	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE #1
	BASE	2.	ANODE	2.	BASE. #1	2.	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER. #1	3.	
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	
	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	
13.	BASE	13.		13.	COLLECTOR, #4	13.	BASE, #2
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE #1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		
3.	,	3.	CATHODE	3.	COMMON DRAIN (OUTPUT)		
4.	,	4.	CATHODE	4.			
5.	DRAIN, #3	5.		5.	COMMON DRAIN (OUTPUT)		
6.	DRAIN, #3	6.		6.	COMMON DRAIN (OUTPUT)		
7.	DRAIN, #4		CATHODE	7.	COMMON DRAIN (OUTPUT)		
8.	DRAIN, #4		CATHODE	8.	SOURCE P-CH		
	GATE, #4		ANODE	9.	SOURCE P-CH		
10.	SOURCE, #4		ANODE	10.			
11.	GATE, #3		ANODE	11.			
12		12	ANODE	12.			
	SOURCE, #3		-				
13.	GATE, #2	13.	ANODE	13.			
13. 14.	GATE, #2 SOURCE, #2	13. 14.	ANODE	14.	COMMON DRAIN (OUTPUT)		
13. 14. 15.	GATE, #2 SOURCE, #2 GATE, #1	13. 14. 15.	ANODE ANODE	14. 15.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
13. 14.	GATE, #2 SOURCE, #2	13. 14.	ANODE	14.	COMMON DRAIN (OUTPUT)		

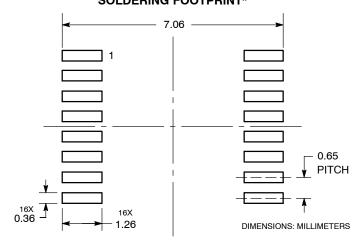
DOCUMENT NUMBER:	98ASB42566B Electronic versions are uncontrolled except when accessed directly from the Docu Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in			
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1.27P		PAGE 2 OF 2	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 19 OCT 2006

TSSOP-16 WB

NOTES:


- DIMENSIONING AND TOLERANCING PER
 ANSI V14 5M 1982
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
- EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- INTERLEAD FLASH ON PHOTHOSION SHALL
 NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.08 (0.003) TOTAL
 IN EXCESS OF THE K DIMENSION AT
 MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65 BSC		0.026 BSC		
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252 BSC		
М	0 °	8°	0 °	8 °	

RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code A = Assembly Location

L = Wafer Lot Y = Year W = Work Week G or = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales