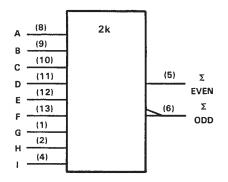
SDLS152 – DECEMBER 1972 – REVISED MARCH 1988


- Generates Either Odd or Even Parity for Nine Data Lines
- Cascadable for n-Bits
- Can Be Used to Upgrade Existing Systems using MSI Parity Circuits
- Typical Data-to-Output Delay of Only 14 ns for 'S280 and 33 ns for 'LS280
- Typical Power Dissipation: 'LS280 . . . 80 mW 'S280 . . . 335 mW

FUNCTION TABLE

NUMBER OF INPUTS A	OUTP	UTS
THRU I THAT ARE HIGH	Σ ΕVΕΝ	Σ ODD
0, 2, 4, 6, 8	н	L
1, 3, 5, 7, 9	L	н

H = high level, L = low level

logic symbol[†]

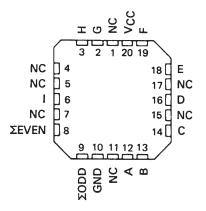
[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

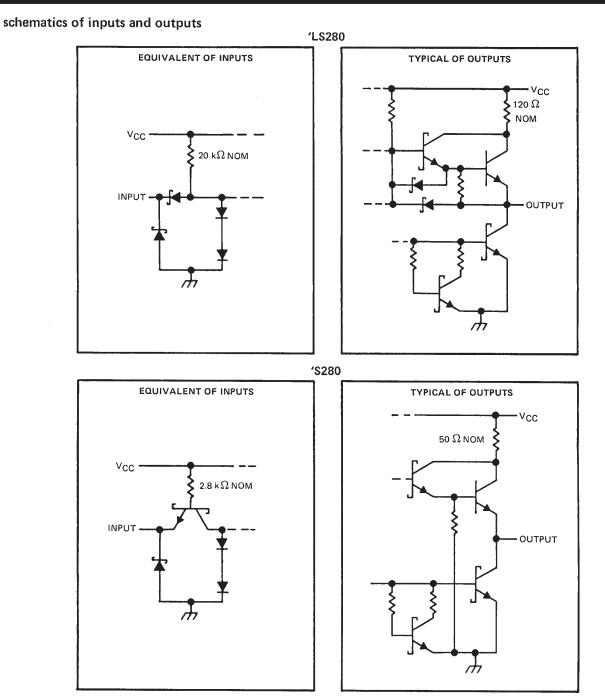
description

These universal, monolithic, nine-bit parity generators/checkers utilize Schottky-clamped TTL high-performance circuitry and feature odd/even outputs to faciliate operation of either odd or even parity application. The word-length capability is easily expanded by cascading as shown under typical application data.

Series 54LS/74LS and Series 54S/74S parity generators/checkers offer the designer a trade-off between reduced power consumption and high performance. These devices can be used to upgrade the performance of most systems utilizing the '180 parity generator/checker. Although the 'LS280 and 'S280 are implemented without expander inputs, the corresponding function is provided by the availability of an input at pin 4 and the absence of any internal connection at pin 3. This permits the 'LS280 and 'S280 to be substituted for the '180 in existing designs to produce an identical function even if 'LS280's and 'S280's are mixed with existing '180's.


These devices are fully compatible with most other TTL circuits. All 'LS280 and 'S280 inputs are buffered to lower the drive requirements to one Series 54LS/74LS or Series 54S/74S standard load, respectively.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


140 VCC $G \square 1$ $H \square 2$ 13 F 120 E 1 04 11D D ΣEVEN 5 10 C $\Sigma ODD \square 6$ 9 B GND Г 8 Α

SN54LS280, SN54S280 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

SDLS152 - DECEMBER 1972 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage (see Note 1)	
Input voltage: 'LS280	
'S280	
Operating free-air temperature range: SN54'	
SN74'	0° C to 70° C
Storage temperature range	
NOTE 1: Voltage values are with respect to network ground terminal.	

N sp g d terminal.

SDLS152 - DECEMBER 1972 - REVISED MARCH 1988

recommended operating conditions

		SI	N54LS2	80	SI			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2	· · · · · ·		V
VIL	Low-level input voltage			0.7			0.8	V
юн	High-level output current			- 0.4			- 0.4	mA
^I OL	Low-level output current			4		· · · · · · · · · · · · · · · · · · ·	8	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDIT	TIONS	SI	N54LS2	80	S	N74LS2	80	
		TEST CONDI	10145	MIN	түр‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	$V_{CC} = MIN,$	l _l = – 18 mA				1.5			- 1.5	V
V _{OH}	V _{CC} = MIN, V _{IL} = MAX,	V _{IH} = 2 V, I _{OH} = 0.4 m	A	2.5	3.4		2.7	3.4		v
VOL	V _{CC} = MIN, V _{IL} = MAX	V _{IH} = 2 V,	I _{OL} = 4 mA I _{OL} = 8 mA		0.25	0.4		0.25	0.4	v
Ц	V _{CC} = MAX,	V1 = 7 V				0.1			0.1	mA
IН	V _{CC} = MAX,	VI = 2.7 V	· · · ·			20		*	20	μA
ЦĻ	V _{CC} = MAX,	VI = 0.4 V				- 0.4			- 0.4	mA
los§	V _{CC} = MAX			- 20		- 100	- 20		- 100	mA
lcc	V _{CC} = MAX,	See Note 2			16	27		16	27	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, $T_A = 25^{\circ}$ C. §Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

NOTE 2: I_{CC} is measured with all inputs grounded and all outputs open.

switching characteristics, V_{CC} = 5 V, T_A = 25° C

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	MAX	UNIT
^t PLH	Data	Σ Even			33	50	
^t PHL	0818	2 Even	$C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega,$ Inputs not under test at 0 V.		29	45	ns
^t PLH	Data	Σ Odd	See Note 3		23	35	
^t PHL	Data	2 Odu	See Note S		31	50	ns

¶ tp_H = propagation delay time, low-to-high-level output; tpHL = propagation delay time, high-to-low-level output NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SDLS152 – DECEMBER 1972 – REVISED MARCH 1988

recommended operating conditions

	S	N54S28	30	S	N74S28	30	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-1	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, T _A	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITION	s†	MIN	TYP‡	MAX	UNIT
ЧΗ	High-level input voltage			2			V
VIL	Low-level input voltage				·····	0.8	V
VIK	Input clamp voltage	$V_{CC} = MIN, I_{I} = -18 \text{ mA}$				1.2	V
Хон	High-level output voltage	$V_{CC} = MIN, V_{IH} = 2V,$	SN54S'	2.5	3.4		
· OH		VIL = 0.8 V, IOH = -1 mA	SN74S'	2.7	3,4		V
Vol	Low-level output voltage	$V_{CC} = MIN, V_{IH} = 2V,$				0.5	V
- OL		VIL = 0.8 V, IOL = 20 mA				0.5	
II.	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V				1	mA
ŧн	High-level input current	V _{CC} = MAX, V ₁ = 2.7 V				50	μA
ΊL	Low-level input current	V _{CC} = MAX, V _I = 0.5 V	and and an an an and an			-2	mA
los	Short-circuit output current§	V _{CC} = MAX		-40		-100	mA
		Vee - MAX See New 2	SN54S280		67	99	
Icc	Supply current	V _{CC} = MAX, See Note 2	SN74S280		67	105	mA
		$V_{CC} = MAX, T_A = 125^{\circ}C,$ See Note 2	SN54S280N			94	mA

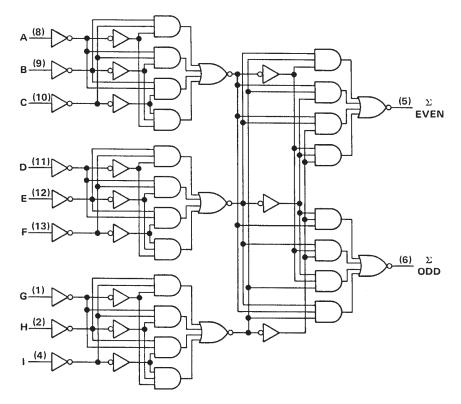
[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

NOTE 2: ICC is measured with all inputs grounded and all outputs open.

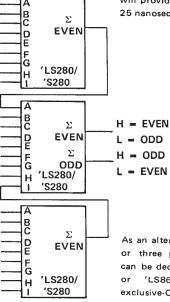
switching characteristics, V_{CC} = 5 V, T_A = 25° C


PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
^t PLH	Data	Σ Even			14	21	
^t PHL	Data	2 Even	$C_{L} = 15 pF, R_{L} = 280 \Omega,$		11.5	18	ns
^t PLH	Data	Σ Odd	See Note 3		14	21	
tPHL	Data	2.000			11.5	18	ns

 \P_{tpLH} = propagation delay time, low-to-high-level output: t_{PHL} = propagation delay time, high-to-low-level output NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

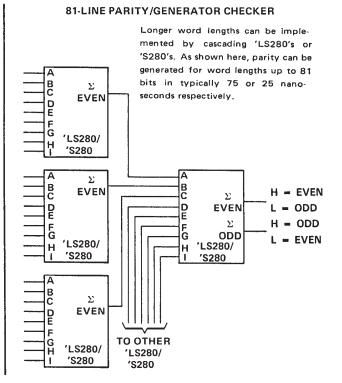
SDLS152 - DECEMBER 1972 - REVISED MARCH 1988

logic diagram (positive logic)



Pin numbers shown are for D, J, N, and W packages.

TYPICAL APPLICATION DATA


25-LINE PARITY/GENERATOR CHECKER

Three 'LS280's or 'S280's can be used to implement a 25-line parity generator/checker. This arrangement will provide parity in typically 75 or 25 nanoseconds respectively.

will provide parity in typically 75 o 25 nanoseconds respectively.

As an alternative, the outputs of two or three parity generators/checkers can be decoded with a 2-input ('S86 or 'LS86) or 3-input ('S135) exclusive-OR gate for 18- or 27-line parity applications.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
JM38510/32901BCA	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32901BCA	Samples
M38510/32901BCA	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32901BCA	Samples
M38510/32901BCA	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32901BCA	Samples
SN54LS280J	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS280J	Samples
SN54LS280J	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS280J	Samples
SN54S280J	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54S280J	Samples
SN54S280J	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54S280J	Samples
SN74LS280D	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS280	Samples
SN74LS280D	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS280	Samples
SN74LS280N	ACTIVE	PDIP	Ν	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS280N	Samples
SN74LS280N	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS280N	Samples
SN74LS280NSR	ACTIVE	SOP	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS280	Samples
SN74LS280NSR	ACTIVE	SOP	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS280	Samples
SNJ54LS280J	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS280J	Samples
SNJ54LS280J	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS280J	Samples
SNJ54LS280W	ACTIVE	CFP	W	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS280W	Samples
SNJ54LS280W	ACTIVE	CFP	W	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS280W	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SNJ54S280J	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54S280J	Samples
SNJ54S280J	ACTIVE	CDIP	J	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54S280J	Samples
SNJ54S280W	ACTIVE	CFP	W	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54S280W	Samples
SNJ54S280W	ACTIVE	CFP	W	14	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54S280W	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

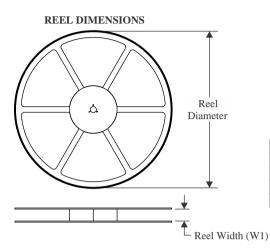
OTHER QUALIFIED VERSIONS OF SN54LS280, SN74LS280 :

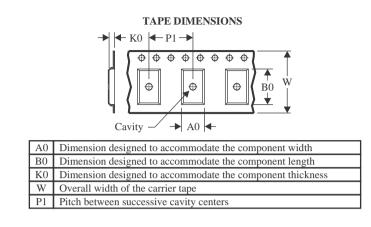
• Catalog : SN74LS280

Military : SN54LS280

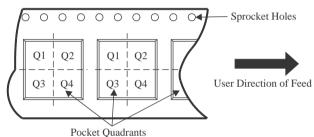
NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product


• Military - QML certified for Military and Defense Applications

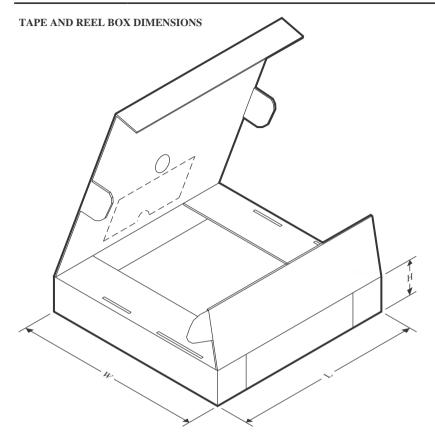


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

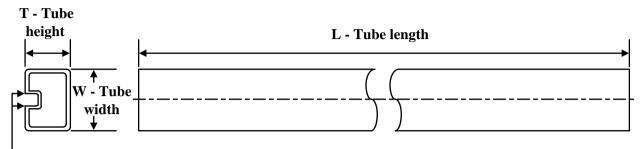

1	*All dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	SN74LS280NSR	SOP	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

7-Dec-2024

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS280NSR	SOP	NS	14	2000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

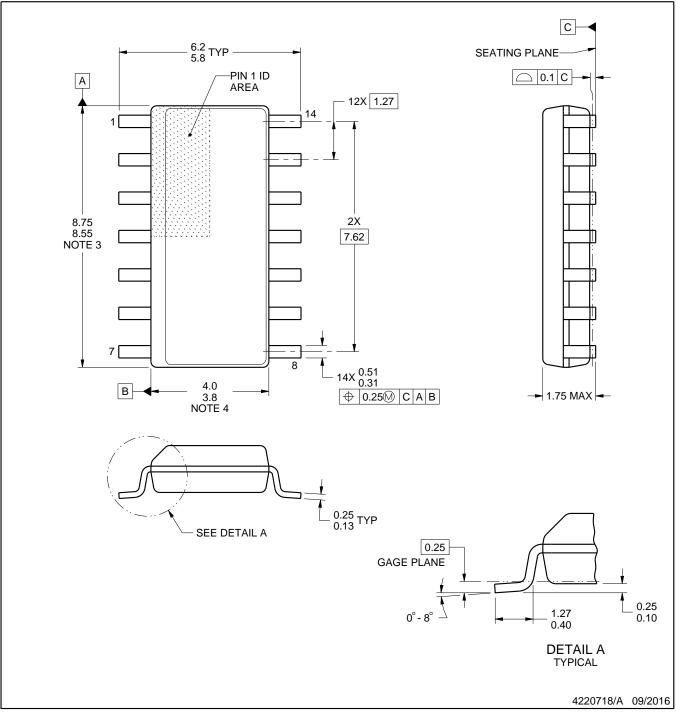
7-Dec-2024

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SN74LS280D	D	SOIC	14	50	506.6	8	3940	4.32
SN74LS280N	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS280N	N	PDIP	14	25	506	13.97	11230	4.32
SNJ54LS280W	W	CFP	14	25	506.98	26.16	6220	NA
SNJ54S280W	W	CFP	14	25	506.98	26.16	6220	NA


D0014A

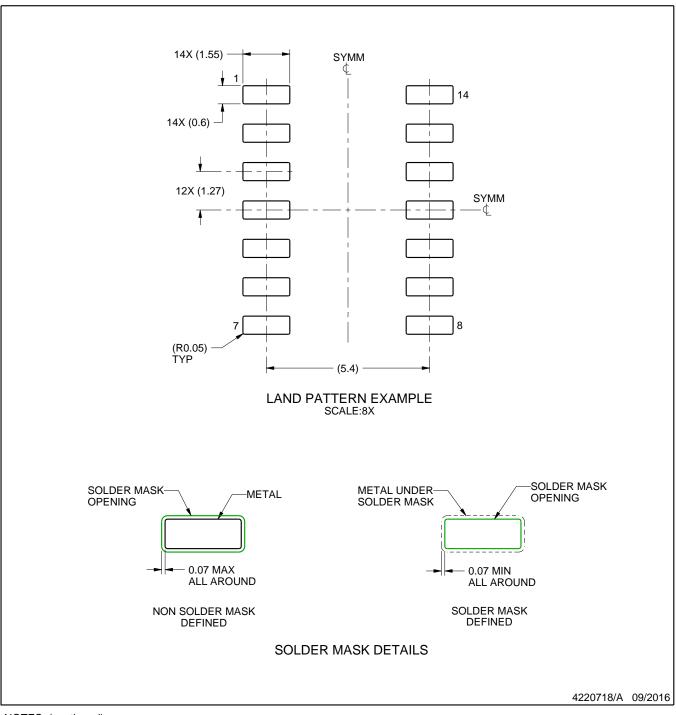
PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.



D0014A

EXAMPLE BOARD LAYOUT

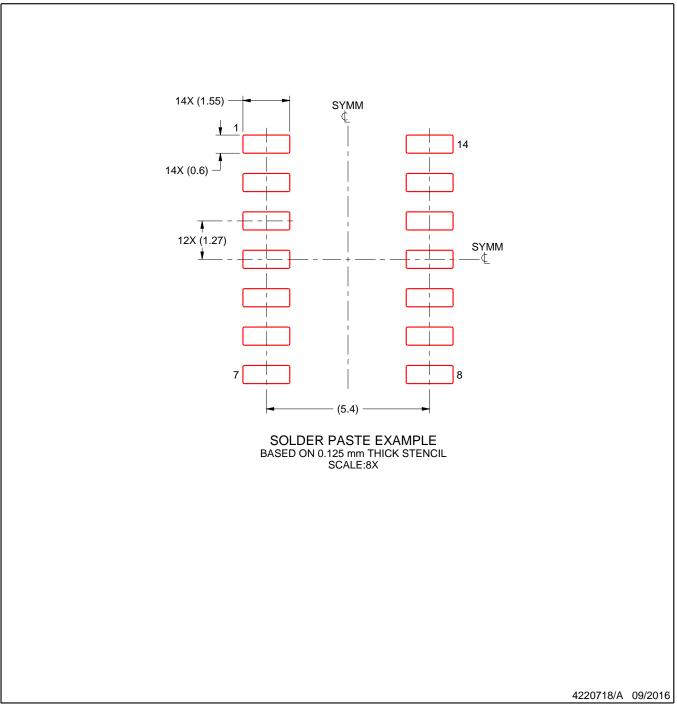
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



D0014A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

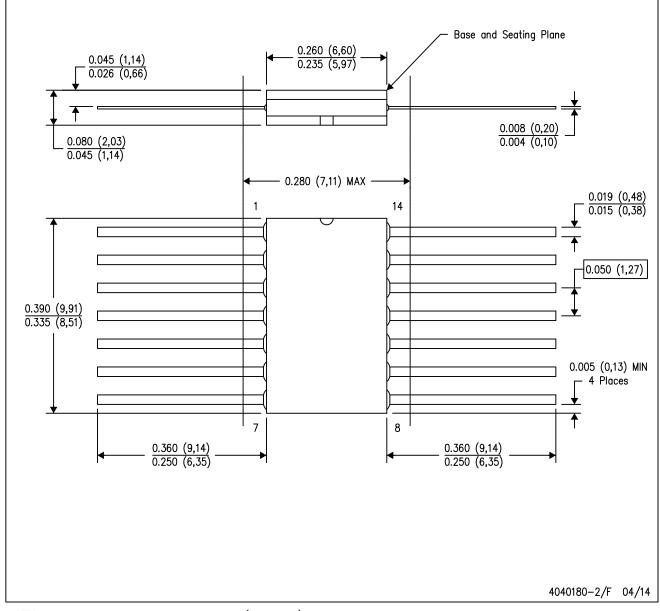
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

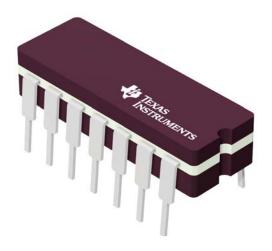
NS (R-PDSO-G**)


14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

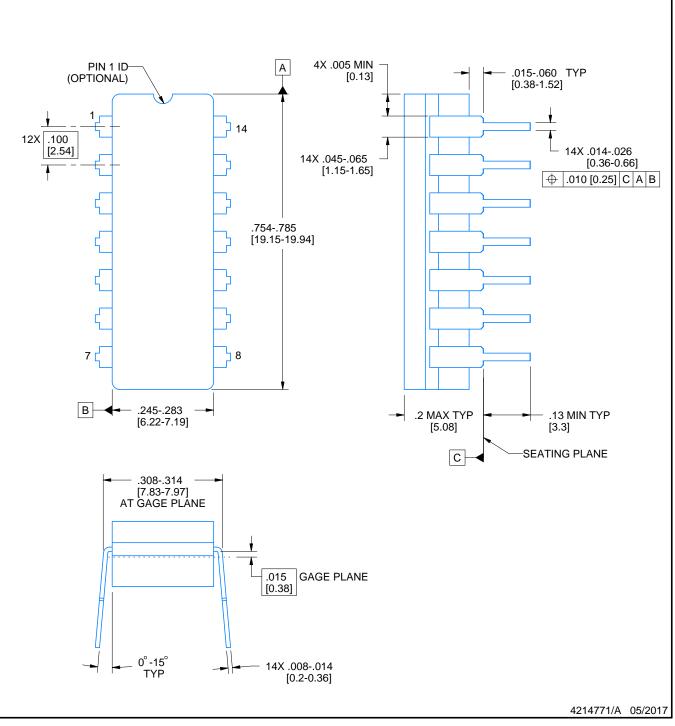

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F14

GENERIC PACKAGE VIEW

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


J0014A

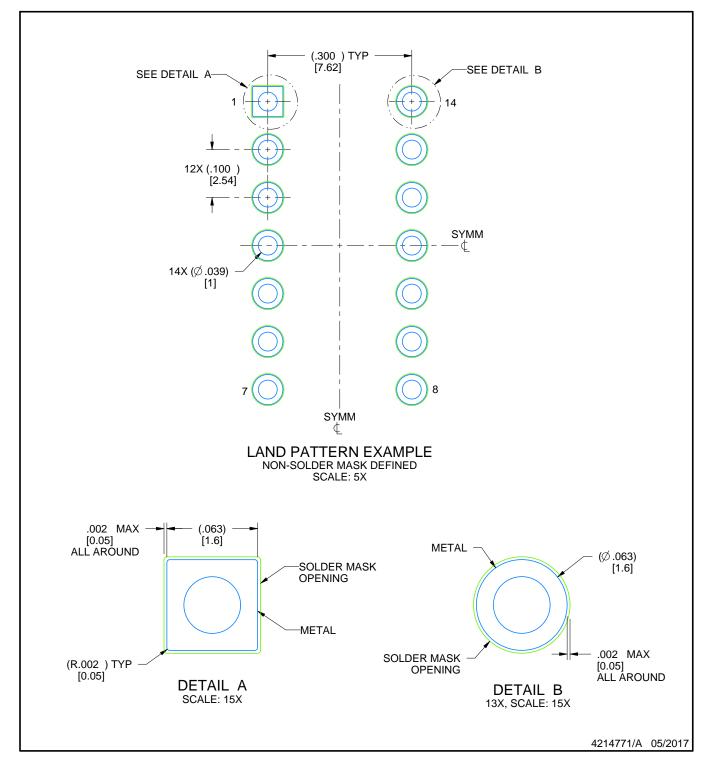
PACKAGE OUTLINE

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

NOTES:

- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.



J0014A

EXAMPLE BOARD LAYOUT

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated