Dual Precision Retriggerable/Resettable Monostable Multivibrator

MC14538B

The MC14538B is a dual, retriggerable, resettable monostable multivibrator. It may be triggered from either edge of an input pulse, and produces an accurate output pulse over a wide range of widths, the duration and accuracy of which are determined by the external timing components, C_{X} and R_{X}. Output Pulse Width $\mathrm{T}=\mathrm{R}_{\mathrm{X}} \cdot \mathrm{C}_{\mathrm{X}}$ (secs)

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{X}}=\Omega \\
& \mathrm{C}_{\mathrm{X}}=\text { Farads }
\end{aligned}
$$

Features

- Unlimited Rise and Fall Time Allowed on the A Trigger Input
- Pulse Width Range $=10 \mu \mathrm{~s}$ to 10 s
- Latched Trigger Inputs
- Separate Latched Reset Inputs
- 3.0 Vdc to 18 Vdc Operational Limits
- Triggerable from Positive (A Input) or Negative-Going Edge (B-Input)
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-pin Compatible with MC14528B and CD4528B (CD4098)
- Use the MC54/74HC4538A for Pulse Widths Less Than 10μ s with Supplies Up to 6 V
- NLV Prefix for Automotive and Other Applications Requiring

Unique Site and Control Change Requirements; AEC-Q100
Qualified and PPAP Capable

- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage Range (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient) per Pin	± 10	mA
P_{D}	Power Dissipation, per Package (Note 1)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$ This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{S S}$ or V_{DD}). Unused outputs must be left open.

SOIC-16
D SUFFIX
CASE 751B

SOIC-16WB DW SUFFIX CASE 751G

TSSOP-16
DT SUFFIX CASE 948F

MARKING DIAGRAMS

A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G or ${ }^{\text {• }} \quad=\mathrm{Pb}$-Free Indicator
(Note: Microdot may be in either location)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ONE-SHOT SELECTION GUIDE

TOTAL OUTPUT PULSE WIDTH RANGE
RECOMMENDED PULSE WIDTH RANGE
$>$

BLOCK DIAGRAM

R_{X} AND C_{X} ARE EXTERNAL COMPONENTS.
$V_{D D}=$ PIN 16
$V_{\text {SS }}=$ PIN 8, PIN 1, PIN 15

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC14538BDG	$\begin{aligned} & \text { SOIC-16 } \\ & \text { (Pb-Free) } \end{aligned}$	48 Units / Rail
MC14538BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape \& Reel
NLV14538BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape \& Reel
MC14538BDTR2G	$\begin{aligned} & \text { TSSOP-16 } \\ & \text { (Pb-Free) } \end{aligned}$	2500 Units / Tape \& Reel
NLV14538BDTR2G*	$\begin{aligned} & \text { TSSOP-16 } \\ & \text { (Pb-Free) } \end{aligned}$	2500 Units / Tape \& Reel
MC14538BDWG	SOIC-16 WB (Pb-Free)	47 Units / Rail
NLV14538BDWG*	SOIC-16 WB (Pb-Free)	47 Units / Rail
MC14538BDWR2G	$\begin{gathered} \text { SOIC-16 WB } \\ \text { (Pb-Free) } \end{gathered}$	1000 Units / Tape \& Reel
NLV14538BDWR2G*	$\begin{aligned} & \text { SOIC-16 WB } \\ & \text { (Pb-Free) } \\ & \hline \end{aligned}$	1000 Units / Tape \& Reel

[^0]ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ (Note 2)	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$ "1" Level $V_{\text {in }}=0 \text { or } V_{D D}$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
Input Voltage $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \end{aligned}$ "1" Level $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	V_{IL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	Vdc
$\begin{array}{\|cl} \hline \text { Output Drive Current } & \\ \left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) & \text { Source } \\ \left(\mathrm{VOH}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right) & \\ \left(\mathrm{VOH}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \end{array}$	IOH	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	- - -	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{aligned} & -4.2 \\ & -0.88 \\ & -2.25 \\ & -8.8 \end{aligned}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
$\begin{array}{ll} \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	$\mathrm{l}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current, Pin 2 or 14	1 in	15	-	± 0.05	-	± 0.00001	± 0.05	-	± 0.5	$\mu \mathrm{Adc}$
Input Current, Other Inputs	$1{ }_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance, Pin 2 or 14	$\mathrm{C}_{\text {in }}$	-	-	-	-	25	-	-	-	pF
Input Capacitance, Other Inputs $\left(\mathrm{V}_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package) $\mathrm{Q}=$ Low, $\overline{\mathrm{Q}}=$ High	I_{DD}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	MAdc
Quiescent Current, Active State (Both) (Per Package) $\mathrm{Q}=$ High, $\overline{\mathrm{Q}}=$ Low	I_{DD}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	-	$\begin{aligned} & 0.04 \\ & 0.08 \\ & 0.13 \end{aligned}$	$\begin{aligned} & \hline 0.20 \\ & 0.45 \\ & 0.70 \end{aligned}$	-	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	mAdc
Total Supply Current at an external load capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)$ and at external timing network ($\mathrm{R}_{\mathrm{X}}, \mathrm{C}_{\mathrm{X}}$) (Note 3)	$\mathrm{I}^{\text {T }}$	$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(3.5 \\ & \mathrm{I}_{\mathrm{T}}=(8.0 \\ & \mathrm{I}_{\mathrm{T}}=(1.2 \\ & \text { where } \end{aligned}$	$\begin{aligned} & \left.10^{-2}\right) \\ & \left.10^{-2}\right) \\ & \times 10^{-1} \\ & \hline 1 \text { in } \mu \mathrm{A} \\ & C_{x} \text { in } \mu \mathrm{F} \\ & \mathrm{f} \text { in } \mathrm{Hz} \text { is } \end{aligned}$	$\begin{aligned} & C_{x f}^{f}+4 C_{x f}^{f} \\ & C_{x f}^{f}+9 C_{x f}^{f} \\ & { }_{x} C_{x}^{f}+12 C \end{aligned}$ ne monost C_{L} in $p F, R_{X}$ he input fre	$\begin{aligned} & 1 \times 10^{-} \\ & 2 \times 10^{-} \\ & \mathrm{f}+3 \mathrm{x} \end{aligned}$ le switc in ohm uency.	$\mathrm{C}_{\mathrm{L}} \mathrm{f}$ $\mathrm{C}_{\mathrm{L}} \mathrm{f}$ ${ }^{-5} \mathrm{C}_{\mathrm{L}} \mathrm{f}$ ng only), and		MAdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.

OPERATING CONDITIONS

External Timing Resistance	R_{X}	-	5.0	-	$($ Note 4$)$	$\mathrm{k} \Omega$
External Timing Capacitance	C_{X}	-	0	-	No Limit $($ Note 5$)$	$\mu \mathrm{F}$

4. The maximum usable resistance R_{x} is a function of the leakage of the capacitor C_{x}, leakage of the MC14538B, and leakage due to board layout and surface resistance. Susceptibility to externally induced noise signals may occur for $R_{X}>1 M \Omega$.
5. If $\mathrm{C}_{\mathrm{X}}>15 \mu \mathrm{~F}$, use discharge protection diode per Fig. 11.

SWITCHING CHARACTERISTICS (Note 6) $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	All Types			Unit
			Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 7) } \end{aligned}$	Max	
$\begin{aligned} & \text { Output Rise Time } \\ & \mathrm{t}_{\mathrm{TLH}}=(1.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+33 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(0.60 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(0.40 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {Lth }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & \mathrm{t}_{\mathrm{THL}}=(1.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+33 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.60 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.40 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \end{aligned}$	$\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \\ \hline \end{gathered}$	ns
Propagation Delay Time A or B to Q or $\overline{\mathrm{Q}}$ $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.90 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+255 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.36 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+132 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\text {PHL }}=(0.26 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+87 \mathrm{~ns}$	$\begin{aligned} & \hline \mathrm{t}_{\text {PLH, }}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 300 \\ & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \\ & 220 \end{aligned}$	ns
```Reset to Q or Q tPLH, tPHL = (0.90 ns/pF) C C + 205 ns tPLH, tPHL = (0.36 ns/pF) CL + 107 ns tPLH, tPHL = (0.26 ns/pF) CL + 82 ns```		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 250 \\ 125 \\ 95 \end{gathered}$	$\begin{aligned} & 500 \\ & 250 \\ & 190 \end{aligned}$	ns
Input Rise and Fall Times Reset	$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	-	-	$\begin{gathered} 15 \\ 5 \\ 4 \end{gathered}$	us
B Input		$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	-	$\begin{gathered} 300 \\ 1.2 \\ 0.4 \end{gathered}$	$\begin{gathered} 1.0 \\ 0.1 \\ 0.05 \end{gathered}$	ms
A Input		$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	No Limit			-
Input Pulse Width A, B, or Reset	$\begin{aligned} & \mathrm{t}_{\mathrm{WH}}, \\ & \mathrm{t}_{\mathrm{WL}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 170 \\ & 90 \\ & 80 \end{aligned}$	$\begin{aligned} & 85 \\ & 45 \\ & 40 \end{aligned}$		ns
Retrigger Time	trr	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	-	-	ns
Output Pulse Width — Q or $\overline{\mathbf{Q}}$ Refer to Figures 8 and 9 $\mathrm{C}_{\mathrm{X}}=0.002 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega$	T	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 198 \\ & 200 \\ & 202 \end{aligned}$	$\begin{aligned} & 210 \\ & 212 \\ & 214 \end{aligned}$	$\begin{aligned} & 230 \\ & 232 \\ & 234 \end{aligned}$	us
$\mathrm{C}_{\mathrm{X}}=0.1 \mu \mathrm{~F}, \mathrm{RX}_{\mathrm{X}}=100 \mathrm{k} \Omega$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 9.3 \\ & 9.4 \\ & 9.5 \end{aligned}$	$\begin{gathered} 9.86 \\ 10 \\ 10.14 \end{gathered}$	$\begin{aligned} & \hline 10.5 \\ & 10.6 \\ & 10.7 \end{aligned}$	ms
$\mathrm{C}_{\mathrm{X}}=10 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega$		$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 0.91 \\ & 0.92 \\ & 0.93 \end{aligned}$	$\begin{gathered} \hline 0.965 \\ 0.98 \\ 0.99 \end{gathered}$	$\begin{aligned} & 1.03 \\ & 1.04 \\ & 1.06 \end{aligned}$	s
Pulse Width Match between circuits in the same package. $C_{X}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega$	$\begin{gathered} 100 \\ {\left[\left(T_{1}-T_{2}\right) / T_{1}\right]} \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \\ & \pm 1.0 \end{aligned}$	$\begin{aligned} & \pm 5.0 \\ & \pm 5.0 \\ & \pm 5.0 \end{aligned}$	\%

6. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
7. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.


Figure 1. Logic Diagram
(1/2 of Device Shown)


Figure 2. Power Dissipation Test Circuit and Waveforms


Figure 3. Switching Test Circuit


Figure 4. Switching Test Waveforms


Figure 5. Typical Normalized Distribution of Units for Output Pulse Width



Figure 6. Typical Pulse Width Variation as a Function of Supply Voltage $V_{D D}$

FUNCTION TABLE

Inputs			Outputs
Reset	A	B	Q $\overline{\mathbf{Q}}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\widetilde{L}$	$\begin{aligned} & \mathrm{H} \\ & 2 \end{aligned}$	
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\Gamma_{\mathrm{H}}^{2}$		Not Triggered Not Triggered
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\underset{\mathrm{L}, \mathrm{H}, \mathrm{Z}}{ }$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L}, \mathrm{H}, \Gamma \end{gathered}$	Not Triggered Not Triggered
$\mathrm{L}^{\mathrm{L}}$	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & X X \\ & X \end{aligned}$	L H

Figure 7. Typical Total Supply Current versus Output Duty Cycle


Figure 8. Typical Error of Pulse Width Equation versus Temperature


Figure 9. Typical Error of Pulse Width Equation versus Temperature

THEORY OF OPERATION


Figure 10. Timing Operation

## TRIGGER OPERATION

The block diagram of the MC14538B is shown in Figure 1, with circuit operation following.

As shown in Figure 1 and 10, before an input trigger occurs, the monostable is in the quiescent state with the Q output low, and the timing capacitor $\mathrm{C}_{\mathrm{X}}$ completely charged to $\mathrm{V}_{\mathrm{DD}}$. When the trigger input A goes from $\mathrm{V}_{\mathrm{SS}}$ to $\mathrm{V}_{\mathrm{DD}}$ (while inputs B and $\overline{\text { Reset }}$ are held to $\mathrm{V}_{\mathrm{DD}}$ ) a valid trigger is recognized, which turns on comparator C 1 and N -channel transistor N1 (1). At the same time the output latch is set. With transistor N 1 on, the capacitor $\mathrm{C}_{\mathrm{X}}$ rapidly discharges toward $\mathrm{V}_{\mathrm{SS}}$ until $\mathrm{V}_{\text {ref1 }}$ is reached. At this point the output of comparator C 1 changes state and transistor N1 turns off. Comparator C1 then turns off while at the same time comparator C2 turns on. With transistor N1 off, the capacitor $\mathrm{C}_{\mathrm{X}}$ begins to charge through the timing resistor, $\mathrm{R}_{\mathrm{X}}$, toward $\mathrm{V}_{\mathrm{DD}}$. When the voltage across $\mathrm{C}_{\mathrm{X}}$ equals $\mathrm{V}_{\text {ref } 2}$, comparator C 2 changes state, causing the output latch to reset ( Q goes low) while at the same time disabling comparator C2 (2). This ends at the timing cycle with the monostable in the quiescent state, waiting for the next trigger.

In the quiescent state, $\mathrm{C}_{\mathrm{X}}$ is fully charged to $\mathrm{V}_{\mathrm{DD}}$ causing the current through resistor $\mathrm{R}_{\mathrm{X}}$ to be zero. Both comparators are "off" with total device current due only to reverse junction leakages. An added feature of the MC14538B is that the output latch is set via the input trigger without regard to the capacitor voltage. Thus, propagation delay from trigger to Q is independent of the value of $\mathrm{C}_{\mathrm{X}}, \mathrm{R}_{\mathrm{X}}$, or the duty cycle of the input waveform.

## RETRIGGER OPERATION

The MC14538B is retriggered if a valid trigger occurs (3) followed by another valid trigger (4) before the Q output has returned to the quiescent (zero) state. Any retrigger, after the timing node voltage at pin 2 or 14 has begun to rise from $\mathrm{V}_{\text {ref } 1}$, but has not yet reached $\mathrm{V}_{\text {ref 2 }}$, will cause an increase in output pulse width T . When a valid retrigger is initiated (4), the voltage at $\mathrm{C}_{\mathrm{X}} / \mathrm{R}_{\mathrm{X}}$ will again drop to $\mathrm{V}_{\text {ref } 1}$ before progressing along the RC charging curve toward $\mathrm{V}_{\mathrm{DD}}$. The Q output will remain high until time $T$, after the last valid retrigger.

## RESET OPERATION

The MC14538B may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse
on $\overline{\text { Reset }}$ sets the reset latch and causes the capacitor to be fast charged to $\mathrm{V}_{\mathrm{DD}}$ by turning on transistor P 1 (5). When the voltage on the capacitor reaches $\mathrm{V}_{\text {ref 2 }}$, the reset latch will clear, and will then be ready to accept another pulse. It the $\overline{\text { Reset }}$ input is held low, any trigger inputs that occur will be inhibited and the Q and $\overline{\mathrm{Q}}$ outputs of the output latch will not change. Since the Q output is reset when an input low level is detected on the Reset input, the output pulse T can be made significantly shorter than the minimum pulse width specification.

## POWER-DOWN CONSIDERATIONS

Large capacitance values can cause problems due to the large amount of energy stored. When a system containing the MC 14538 B is powered down, the capacitor voltage may discharge from $V_{D D}$ through the standard protection diodes at pin 2 or 14 . Current through the protection diodes should be limited to 10 mA and therefore the discharge time of the $\mathrm{V}_{\mathrm{DD}}$ supply must not be faster than $\left(\mathrm{V}_{\mathrm{DD}}\right)$. $(\mathrm{C}) /(10 \mathrm{~mA})$. For example, if $V_{D D}=10 \mathrm{~V}$ and $\mathrm{C}_{\mathrm{X}}=10 \mu \mathrm{~F}$, the $\mathrm{V}_{\mathrm{DD}}$ supply should discharge no faster than $(10 \mathrm{~V}) \times(10 \mu \mathrm{~F}) /(10 \mathrm{~mA})$ $=10 \mathrm{~ms}$. This is normally not a problem since power supplies are heavily filtered and cannot discharge at this rate.
When a more rapid decrease of $\mathrm{V}_{\mathrm{DD}}$ to zero volts occurs, the MC14538B can sustain damage. To avoid this possibility use an external clamping diode, $\mathrm{D}_{\mathrm{X}}$, connected as shown in Fig. 11.


Figure 11. Use of a Diode to Limit Power Down Current Surge

## TYPICAL APPLICATIONS



Figure 12. Retriggerable Monostables Circuitry


Figure 13. Non-Retriggerable Monostables Circuitry


Figure 14. Connection of Unused Sections

SOIC-16 9.90x3.90×1.50 1.27P
CASE 751B
ISSUE L
DATE 29 MAY 2024

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 mm PER SIDE.
5. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 mm TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION.


MILLIMETERS			
DIM	MIN	NOM	MAX
A	1.35	1.55	1.75
A1	0.00	0.05	0.10
A2	1.35	1.50	1.65
b	0.35	0.42	0.49
c	0.19	0.22	0.25
D	9.90 BSC		
E	6.00 BSC		
E1	3.90 BSC		
e	1.27 BSC		
h	0.25	---	0.50
L	0.40	0.83	1.25
L1	1.05 REF		
O	0	---	$7 \cdot$
TOLERANCE OF FORM AND POSITION			
aaa	0.10		
bbb	0.20		
ccc	0.10		
ddd	0.25		
eee	0.10		



RECOMMENDED MOUNTING FOOTPRINT
*FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE onsemi SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B		Document Repositon: rin red.
DESCRIPTION:	SOIC-16 9.90X3.90X1.50 1.27P		PAGE 1 OF 2

[^1] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

## SOIC-16 9.90x3.90x1.50 1.27P CASE 751B ISSUE L

## GENERIC

MARKING DIAGRAM*

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:	
PIN 1.	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE \#1	PIN 1.	COLLECTOR, DYE \#1
2.	BASE	2.	ANODE	2.	BASE, \#1	2.	COLLECTOR, \#1
3.	Emitter	3.	NO CONNECTION	3.	EMITTER, \#1	3.	COLLECTOR, \#2
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, \#1	4.	COLLECTOR, \#2
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, \#2	5.	COLLECTOR, \#3
6.	BASE	6.	NO CONNECTION	6.	BASE, \#2	6.	COLLECTOR, \#3
7.	COLLECTOR	7.	ANODE	7.	EMITTER, \#2	7.	COLLECTOR, \#4
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, \#2	8.	COLLECTOR, \#4
9.	BASE	9.	CATHODE	9.	COLLECTOR, \#3	9.	BASE, \#4
10.	EMITTER	10.	ANODE	10.	BASE, \#3	10.	EMITTER, \#4
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, \#3	11.	BASE, \#3
12.	EMITTER	12.	CATHODE	12.	COLLECTOR, \#3	12.	EMITTER, \#3
13.	BASE	13.	CATHODE	13.	COLLECTOR, \#4	13.	BASE, \#2
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, \#4	14.	EMITTER, \#2
15.	EMITTER	15.	ANODE	15.	EMITTER, \#4	15.	BASE, \#1
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, \#4	16.	EMITTER, \#1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE \#1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, \#1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		
3.	DRAIN, \#2	3.	CATHODE	3.	COMMON DRAIN (OUTPUT)		
4.	DRAIN, \#2	4.	CATHODE	4.	GATE P-CH		
5.	DRAIN, \#3	5.	CATHODE	5.	COMMON DRAIN (OUTPUT)		
6.	DRAIN, \#3	6.	CATHODE	6.	COMMON DRAIN (OUTPUT)		
7.	DRAIN, \#4	7.	CATHODE	7.	COMMON DRAIN (OUTPUT)		
8.	DRAIN, \#4	8.	CATHODE	8.	SOURCE P-CH		
9.	GATE, \#4	9.	ANODE	9.	SOURCE P-CH		
10.	SOURCE, \#4	10.	ANODE	10.	COMMON DRAIN (OUTPUT)		
11.	GATE, \#3	11.	ANODE	11.	COMMON DRAIN (OUTPUT)		
12.	SOURCE, \#3	12.	ANODE	12.	COMMON DRAIN (OUTPUT)		
13.	GATE, \#2	13.	ANODE	13.	GATE N-CH		
14.	SOURCE, \#2	14.	ANODE	14.	COMMON DRAIN (OUTPUT)		
15.	GATE, \#1	15.	ANODE	15.	COMMON DRAIN (OUTPUT)		
16.	SOURCE, \#1	16.	ANODE	16.	SOURCE N-CH		


| DOCUMENT NUMBER: | 98ASB42566B | Electronic Versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 9.90X3.90X1.501.27P | PAGE 2 OF 2 |

[^2]

SCALE 1：1


16日月
$X X X X X X X X X X X$
$X X X X X X X X X X X$ AWLYYWWG
－
1 昭昭昭
XXXXX＝Specific Device Code
A＝Assembly Location
WL＝Wafer Lot
YY＝Year
WW＝Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package
＊This information is generic．Please refer to device data sheet for actual part marking． $\mathrm{Pb}-$ Free indicator，＂ G ＂or microdot＂ r ＂，may or may not be present．Some products may not follow the Generic Marking．

## SOIC－16 WB CASE 751G ISSUE E

DATE 08 OCT 2021


1．DIMENSIDNING AND TQLERANCING PER ASME Y14．5M， 1994.
2．CINTRDLLING DIMENSIDN：MILLIMETERS
3．DIMENSIDN b DEES NDT INCLUDE DAMBAR PROTRUSIDN． ALLIWABLE PROTRUSIDN SHALL BE 0.13 TOTAL IN EXCESS DF B DIMENSIIN AT MAXIMUM MATERIAL CUNDITIUN．
4．DIMENSIONS D AND E DD NOT INCLUDE MLLD PROTRUSIONS．
5．MAXIMUM MDLD PROTRUSION GR FLASH TD BE 0.15 PER SIDE．

DIM	MILLIMETERS	
	MIN．	MAX．
A	2.35	2.65
A1	0.10	0.25
B	0.35	0.49
C	0.23	0.32
D	10.15	10.45
E	7.40	7.60
e	1.27	
BSC		
H	10.05	10.55
h	0.53	
LEF		
L	0.50	0.90
M	$0^{\circ}$	

DETAIL A 2X SCALE


| DOCUMENT NUMBER： | 98ASB42567B | Electronic versions are uncontrolled except when accessed directly from the Document Repository． <br> Printed versions are uncontroled except when stamped＂CONTROLLED COPY＂in red． |
| ---: | :--- | :--- | :--- |
| DESCRIPTION： | SOIC－16 WB | PAGE 1 OF 1 |

[^3]

TSSOP-16 WB
CASE 948F
ISSUE B
DATE 19 OCT 2006


1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 ( 0.006 ) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 ( 0.010 ) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL in EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE - $W$ -

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
c		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	SC	0.026	BSC
H	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BC	0.25	BSC
M	$0^{\circ}$	$8^{\circ}$	$0^{\circ}$	$8^{\circ}$



GENERIC   MARKING DIAGRAM*	
XXXX	= Specific Device Code
A	= Assembly Location
L	= Wafer Lot
Y	= Year
W	= Work Week
G or -	= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

[^4]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

## ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales


[^0]:    $\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
    *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

[^1]:    onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

[^2]:    onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

[^3]:    onsemi and OnSemi are trademarks of Semiconductor Components Industries，LLC dba onsemi or its subsidiaries in the United States and／or other countries．onsemi reserves the right to make changes without further notice to any products herein．onsemi makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does onsemi assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any and all liability，including without limitation special，consequential or incidental damages．onsemi does not convey any license under its patent rights nor the rights of others．

[^4]:    onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

