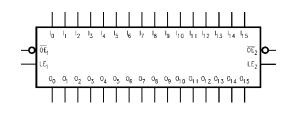
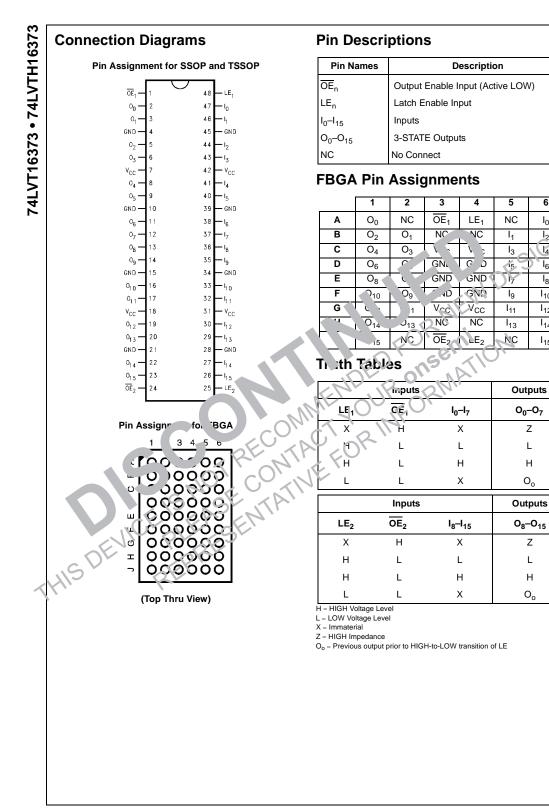
74LVT16373 • 74LVTH16373 Low Voltage 16-Bit Transparent Latch with 3-STATE Outputs

General Description

Features

- Input and output interface capability to systems at $5V V_{CC}$
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused in (74LVTH16373), also available without bushold ture (. 'VT16373)
- Live insertion/extraction r _______
- Power Up/Power Dow. high ...pec
- glitch-free bus loao.
- Outputs sour /sink -?m. 54 m/s
- Functiona. col atible with the 74 series 16373
- Lato Tel manue excepde 500 mA L Dp forma...................... Hui n-L dy mcae! > 2000V Machine medici > 200V
 - Jharged-device model > 1000V
- Also packaged in plastic Fine-Pitch Ball Grid Array FBGA) (Frelin inary)


Ordering Code


FAIRCHILD SEMICONDUCTOR IM	June 2005 Revised August 2024
74LVT16373 • 74LVTI Low Voltage 16-Bit T with 3-STATE Output	73 parent Latch
General Description	Features
The LVT16373 and LVTH16373 contain sixting latches with 3-STATE outputs and is imoriented applications. The device is byte of flip-flops appear transparent to the data we Enable (LE) is HIGH. When LE is LOW, the of the setup time is latched. Data appears on the Output Enable (OE) is LOW. When OE outputs are in a high impedance state. The LVTH16373 data inputs include bushed the need for external pull-up resistors to inputs. These latches are designed for low-voltage applications, but with the capability to provid face to a 5V environment. The LVT16373 are fabricated with an advanced BiCMOS achieve high speed operation similar to a maintaining a low power dissipation.	SV V _{CC} Bushold data inputs eliminate the need for external pull-up resistors to hold unused in (74LVTH16373), also available without bushold in ture (r. 'LVT16373) Live insertion/extraction mainted. Power Up/Power Dow high impeduate provides. glitch-free bus load. Outputs sourch 'sink - ? m. out mich Functional contratibility with the 74 series 16373 Late. VCC Late. Late.
(Note 1) (Preuminary) [TAL 74LVT16 3MEA MS48A 49-1 (Note 2) 74LVT16373Mr1D MTD48 48-4 (Note 2) 74LVT16373GX BGA54A 54-F (Note 1) (Preliminary) [TAL 74LVTH16373GX BGA54A 54-F (Note 1) (Preliminary) [TAL 74LVTH16373MEA MS48A 48-F (Note 2) 74LV1H16373MEA MS48A	Northold Stress Hur n-b dy model > 2000V Wite Machine moost > 200V Understand Stress Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA) (Frelin inary) Package Description Fitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide EEL] Also package (SSOP), JEDEC MO-118, 0.300" Wide Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide EEL] Also package (SSOP), JEDEC MO-153, 6.1mm Wide Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide EEL] all Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LVTH16373MTD MTD48 48-I (Note 2) Vote 1: BGA package available in Tape and Reel only.	all Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Note 1: BGA package available in Tape and Reel only.

Note 2: Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbol

6

 I_0

l2

J_

 I_6

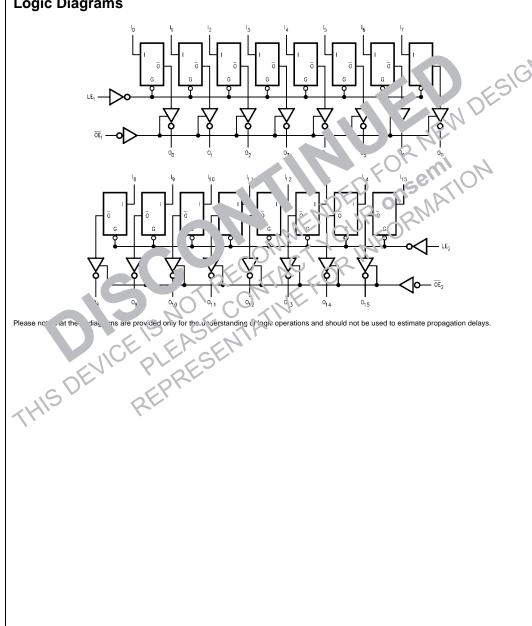
 I_8

 I_{10}

I₁₂

I₁₄

 I_{15}


Functional Description

The LVT16373 and LVTH16373 contain sixteen D-type latches with 3-STATE standard outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. When the Latch Enable (LE_n) input is HIGH, data on the D_{n} enters the latches. In this condition the latches are transparent, i.e, a latch output will change states each time its D input changes. When LE_n is LOW,

Logic Diagrams

the latches store information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LEn. The 3-STATE standard outputs are controlled by the Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW, the standard outputs are in the 2-state mode. When $\overline{\text{OE}}_n$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

74LVT16373 • 74LVTH16373

Symbol	Parameter	Value	Conditions	Unit
V _{CC}	Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	v
		-0.5 to +7.0	Output in HIGH or LOW State (Note 4)	v
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
I _O	DC Output Current	64	V _O > V _{CC} Output at HIGH State	
		128	V _O > V _{CC} Output at LOW State	mA
I _{CC}	DC Supply Current per Supply Pin	±64		mA
I _{GND}	DC Ground Current per Ground Pin	±128		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions

Symbol	Parameter	i .in	Max	Units
V _{CC}	Supply Voltage	27	3.6	V
VI	Input Voltage	0	5.5	V
I _{ОН}	HIGH Level Output Current	24	-32	mA
l _{OL}	LOW Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	85	°C
Δt/ΔV	Input Edge Rate, $V_{IN} = 0.8V - 2.0V$, $V_{CC} = \sqrt{V}$		10	ns/V

alues from which damage to the flevice may or dot. Exposure to subsecondition Functional oper, won under a solute maximum valued conditions is not implied. beyond those indicated may adversely affect device relia Note 4: I_O Absolute Maximum Rating must be ob-٦d.

DC Electrical Charac vristi s

			\mathcal{N}				1
Symbol	vrameti	SE	V _{CI} .	$T_A = 40\%$ Min	G to +85°C Max	Units	Conditions
VIK	Inr + Ci Voltage	XY'	$\frac{(1)}{2.7}$	Pan	–1.2	V	I _I = -18 mA
VIH	Inpu 'IGH Volte	\rightarrow	2.7-3.8	2.0		V	V _O ≤ 0.1V or
VIL	h. Tt L V Vonage		2.7-3.6		0.8	V	$V_{O} \ge V_{CC} - 0.1V$
V _{OH}	Ou Jt HiGH Voltage	5	2.7-3.6	V _{CC} - 0.2			I _{OH} = -100 μA
		250	2.7	2.4		V	I _{OH} = -8 mA
	CUP DLL	1.5V	3.0	2.0			$I_{OH} = -32 \text{ mA}$
V _{OL}	Cutput LOW Voltage		2.7		0.2		I _{OL} = 100 μA
C	195		2.7		0.5		$I_{OL} = 24 \text{ mA}$
12	QL.		3.0		0.4	V	$I_{OL} = 16 \text{ mA}$
<i>K.</i> .			3.0		0.5		$I_{OL} = 32 \text{ mA}$
			3.0		0.55		$I_{OL} = 64 \text{ mA}$
I _{I(HOLD)}	Bushold Input Minimum Drive		3.0	75		μΑ	$V_I = 0.8V$
(Note 5)			5.0	-75			$V_I = 2.0V$
I _{I(OD)}	Bushold Input Over-Drive		3.0	500		μA	(Note 6)
(Note 5)	Current to Change State		0.0	-500		çı, i	(Note 7)
l _l	Input Current		3.6		10		$V_I = 5.5V$
		Control Pins	3.6		±1	μA	$V_I = 0V \text{ or } V_{CC}$
		Data Pins	3.6		-5		$V_I = 0V$
					1		$V_I = V_{CC}$
I _{OFF}	Power Off Leakage Current		0		±100	μA	$0V \le V_I \text{ or } V_O \le 5.5V$
I _{PU/PD}	Power Up/Down 3-STATE		0–1.5V		±100	μA	$V_{O} = 0.5V$ to 3.0V
	Output Current					•	$V_I = GND \text{ or } V_{CC}$
I _{OZL}	3-STATE Output Leakage Curre		3.6		-5	μA	$V_{O} = 0.5V$
I _{OZH}	3-STATE Output Leakage Curre		3.6		5	μA	$V_{O} = 3.0V$
I _{OZH} +	3-STATE Output Leakage Curre	nt	3.6		10	μA	$V_{CC} < V_O \leq 5.5 V$

DC Electrical Characteristics (Continued)

Symbol	Parameter	V _{cc}	T $_A = -40$ °C to $+85$ °C		Units	Conditions
		(V)	Min	Max	Units	Conditions
I _{CCH}	Power Supply Current	3.6		0.19	mA	Outputs HIGH
I _{CCL}	Power Supply Current	3.6		5	mA	Outputs LOW
I _{CCZ}	Power Supply Current	3.6		0.19	mA	Outputs Disabled
I _{CCZ⁺}	Power Supply Current	3.6		0.19	mA	$V_{CC} \leq V_O \leq 5.5 \text{V},$
						Outputs Disabled
Δl _{CC}	Increase in Power Supply Current	3.6		0.2	mA	One Input at V _{CC} – 0.6V
	(Note 8)					Other Inputs at V _{CC} or GND

Note 5: Applies to bushold versions only (74LVTH16373).

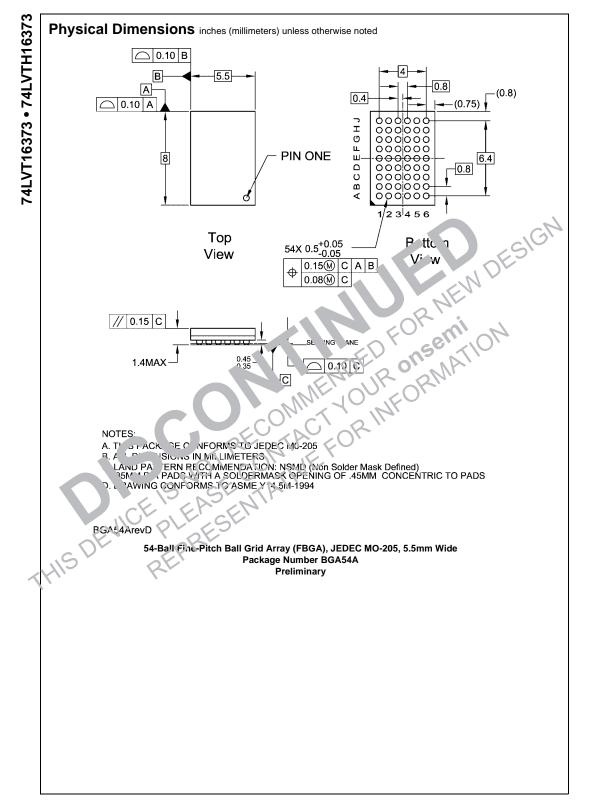
Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

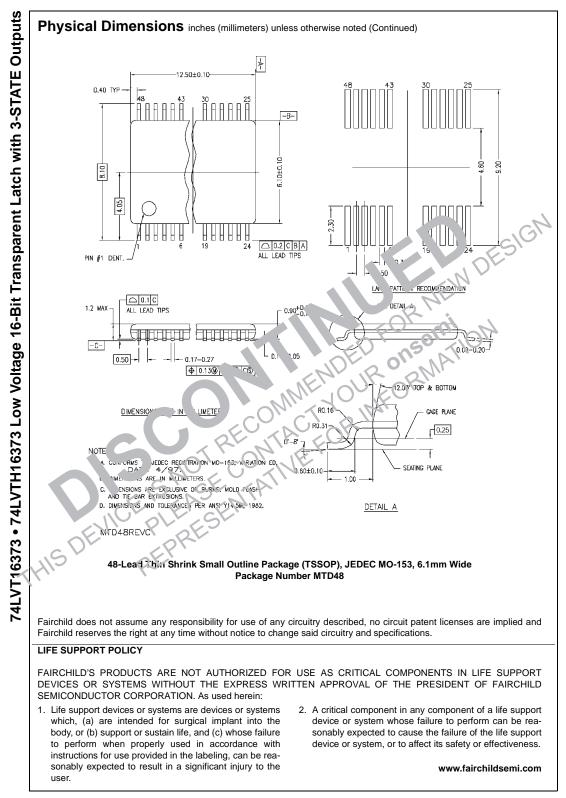
Note 8: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 9)

Symbol	Parameter	V _{CC}	V_{CC} $T_A = 25 °C$					
		(V)	Min	Тур	Ma	its ($\mathbf{C}_{\mathbf{L}}$ = 50 pF, $\mathbf{R}_{\mathbf{L}}$ = 500 Ω	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8			(Note 10)	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 10)	
	rracterized in SSOP package. Guaranteed para ax number of outputs defined as (n). n-1 data i			out l'ertes	eld LC'w.	05	m m	
AC EI	ectrical Characteristic	s			¿D`	ns	ATION	


		T_ =	-40°C to -05°C,	. C. = (10pF, R. = 1	5030		
Symbol	Parameter						
		Mir.	Ma	Min	Max		
t _{PHL}	Propagation Delay	1.5	3.9	1.5	4.3	ns	
t _{PLH}	D _n to O _n	1.5	3.8	1.5	4.2	115	
t _{PHL}	Propagati . Dulay	1.9	A.2	1.9	4.4	ns	
t _{PLH}	LE+ On	1.6	4.3	1.6	4.8	115	
t _{PZL}	Outpu Fnablo Tim	1.3	4.3	1.3	4.9		
t _{PZH}	I Share	10	4.3	1.0	5.1	ns	
t _{PLZ}	Outi Disable Time	1.5	4.7	1.5	4.8	ns	
t _{PHZ}		2.0	5.0	2.0	5.4	115	
t _S	Setup Time, Dn to LE	1.0	í	0.8		ns	
t _H	Holu Time, D _n to LE	1.0	í ,	1.1		ns	
t _w	LE Pulse Width	3.0	í ,	3.0		ns	
t _{OSHL}	Output to Output Skow (Note 11)	ĺ	1.0		1.0	20	
t _{OSLH}		1	1.0	1	1.0	ns	


Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Capacitance (Note 12)

Symbol	Parameter	Conditions	Typical	Units	
CIN	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	4	pF	
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V, V_O = 0V \text{ or } V_{CC}$	8	pF	

Note 12: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

Berterent Bingtaren Bingt ON Semiconductor and we trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC