

Hex Unbuffered Inverter

High-Performance Silicon-Gate CMOS

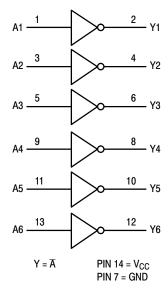
MC74HCU04A

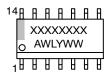
The MC74HCU04A is identical in pinout to the LS04 and the MC14069UB. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device consists of six single-stage inverters. These inverters are well suited for use as oscillators, pulse shapers, and in many other applications requiring a high-input impedance amplifier. For digital applications, the HC04A is recommended.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V; 2.5 to 6.0 V in Oscillator Configurations
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance With the JEDEC Standard No. 7.0 A Requirements
- Chip Complexity: 12 FETs or 3 Equivalent Gates
- –Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant




Figure 1. Logic Diagram

1

MARKING DIAGRAMS

SOIC-14 D SUFFIX CASE 751A

TSSOP-14 DT SUFFIX CASE 948G

XXXXXX = Specific Device Code
A = Assembly Location

WL, L = Wafer Lot Y = Year WW, W = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

A1 [1●	14	v _{cc}
Y1 [2	13] A6
A2 [3	12	Y6
Y2 [4	11] A5
А3 [5	10] Y5
Y3 [6	9] A4
GND [7	8	Y4

FUNCTION TABLE

Inputs	Outputs
A	Y
L	H
H	L

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
V _{in}	DC Input Voltage		-0.5 to +6.5	V
V _{out}	DC Output Voltage		-0.5 to V _{CC} +0.5	V
I _{IN}	DC Input Current, per Pin		±20	mA
I _{OUT}	DC Output Current, Per Pin		±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins		±50	mA
I _{IK}	Input Clamp Current		±20	mA
lok	Output Clamp Current		±20	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
T_L	Lead Temperature, 1 mm from Case for 10 secs		260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 1)	SOIC-14 QFN14 TSSOP-14	116 130 150	°C/W
P _D	Power Dissipation in Still Air at 25°C	SOIC-14 QFN14 TSSOP-20	1077 962 833	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V _{ESD}	ESD Withstand Voltage (Note 2)	Human Body Model Charged Device Model	> 2000 N/A	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V_{CC}	V
T _A	Operating Temperature, All Package Types	-55	+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 2)	-	No Limit	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Measured with minimum pad spacing on an FR4 board, using 76 mm-by-114 mm, 2-ounce copper trace no air flow per JESD51-7.
 HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.

DC ELECTRICAL CHARACTERISTICS (MC74HCU04A)

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	V _{CC}	–55 to 25°C	≤ 85°C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage		2.0 3.0 4.5 6.0	1.7 2.5 3.6 4.8	1.7 2.5 3.6 4.8	I.7 2.5 3.6 4.8	V
V _{IL}	Maximum Low-Level Input Voltage		2.0 3.0 4.5 6.0	0.3 0.5 0.8 1.1	0.3 0.5 0.8 1.1	0.3 0.5 0.8 1.1	V
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = GND$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	1.8 4.0 5.5	1.8 4.0 5.5	1.8 4.0 5.5	V
		$\begin{aligned} V_{\text{in}} = \text{GND} & & I_{\text{out}} \leq 2.4 \text{ mA} \\ & I_{\text{out}} \leq 4.0 \text{ mA} \\ & I_{\text{out}} \leq 5.2 \text{ mA} \end{aligned}$	3.0 4.5 6.0	2.36 3.86 5.36	2.26 3.76 5.26	2.20 3.70 5.20	
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{CC}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	0.2 0.5 0.5	0.2 0.5 0.5	0.2 0.5 0.5	V
		$ \begin{aligned} V_{in} = V_{CC} & & & \left I_{out} \right \leq 2.4 \text{ mA} \\ & & \left I_{out} \right \leq 4.0 \text{ mA} \\ & & \left I_{out} \right \leq 5.2 \text{ mA} \end{aligned} $	3.0 4.5 6.0	0.32 0.32 0.32	0.32 0.37 0.37	0.32 0.40 0.40	
I _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	6.0	1	10	40	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. For $V_{CC} = 2.0 \text{ V}$, $V_{out} = 0.2 \text{ V}$ or $V_{CC} - 0.2 \text{ V}$.

AC ELECTRICAL CHARACTERISTICS (MC74HCU04A)

			Guaranteed Limit			
Symbol	Parameter	V _{CC} V	–55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y (Figures 2 and 3)	2.0 3.0 4.5 6.0	70 40 14 12	90 45 18 15	105 50 21 18	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 2 and 3)	2.0 3.0 4.5 6.0	75 27 15 13	95 32 19 16	110 36 22 19	ns
C _{in}	Maximum Input Capacitance	_	10	10	10	pF

Ī			Typical @ 25°C, V _{CC} = 5.0 V	
	C_{PD}	Power Dissipation Capacitance (Per Inverter) (Note 4)	15	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{4.} Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

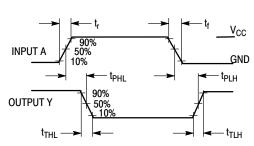
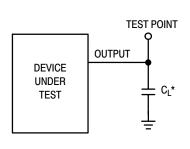



Figure 2. Switching Waveforms

*Includes all probe and jig capacitance
Figure 3. Test Circuit

A Y

Figure 4. Logic Detail (1/6 of Device Shown)

TYPICAL APPLICATIONS

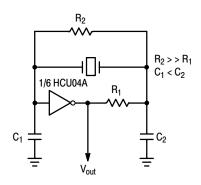


Figure 5. Crystal Oscillator

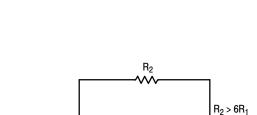


Figure 7. Schmitt Trigger

1/6 HCU04A

 R_1

1/6 HCU04A

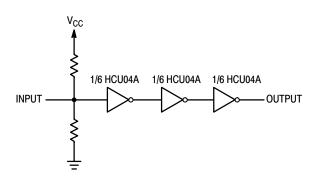


Figure 9. Multi-Stage Amplifier

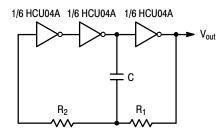


Figure 6. Stable RC Oscillator

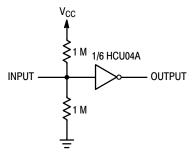
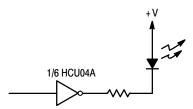



Figure 8. High Input Impedance Single-Stage Amplifier with a 2 to 6 V Supply Range

For reduced power supply current, use high-efficiency LEDs such as the Hewlett-Packard HLMP series or equivalent.

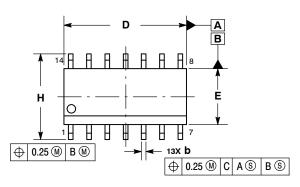
Figure 10. LED Driver

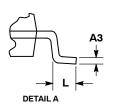
ORDERING INFORMATION

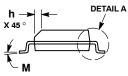
Device	Package	Marking	Shipping [†]
MC74HCU04ADG	SOIC-14	HCU04AG	55 Units / Rail
MC74HCU04ADR2G	SOIC-14	HCU04AG	2500 / Tape & Reel
MC74HCU04ADR2G-Q*	SOIC-14	HCU04AG	2500 / Tape & Reel
MC74HCU04ADTR2G	TSSOP-14	HCU 04A	2500 / Tape & Reel
MC74HCU04ADTR2G-Q*	TSSOP-14	HCU 04A	2500 / Tape & Reel

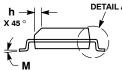
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

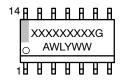





△ 0.10


SOIC-14 NB CASE 751A-03 ISSUE L

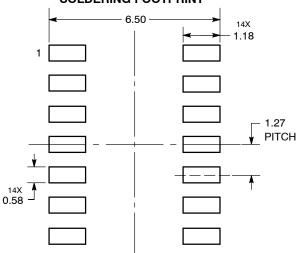
DATE 03 FEB 2016



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 - ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT
- MAXIMUM MATERIAL CONDITION.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE

	MILLIMETERS		INC	HES
DIM	MIN MAX		MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
АЗ	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
е	1.27 BSC		0.050	BSC
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0 °	7°	0 °	7°

GENERIC MARKING DIAGRAM*



XXXXX = Specific Device Code Α = Assembly Location

WL = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

C SEATING PLANE

STYLES ON PAGE 2

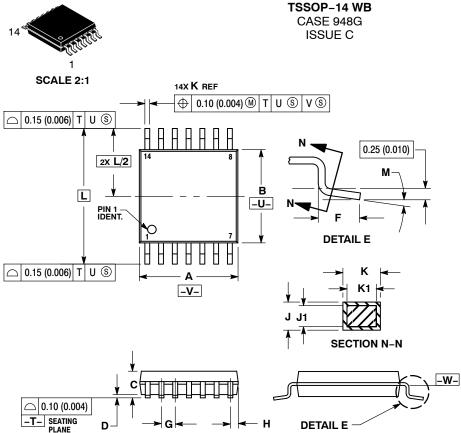
DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016


STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 17 FEB 2016

- NOTES.

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD
- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
- INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
- INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

 TERMINAL NUMBERS ARE SHOWN FOR DEEEDENIC OMITY.
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	o °	8 °	o °	a °

GENERIC MARKING DIAGRAM*

= Assembly Location

L = Wafer Lot = Year = Work Week W

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED SOLDERING FOOTPRINT*

-	7.06
1	
	-
J	PITCH
14X 0.36	_==+
0.36 - 1.26	DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER: 98ASH70246A		Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1	

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales