onsemi

5 V ECL Differential Data and Clock D Flip-Flop

MC10EL52, MC100EL52

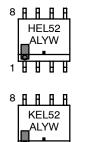
Description

The MC10EL/100EL52 is a differential data, differential clock D flip-flop with reset. The device is functionally equivalent to the E452 device with higher performance capabilities. With propagation delays and output transition times significantly faster than the E452, the EL52 is ideally suited for those applications which require the ultimate in AC performance.

Data enters the master portion of the flip-flop when the clock is LOW and is transferred to the slave, and thus the outputs, upon a positive transition of the clock. The differential clock inputs of the EL52 allow the device to also be used as a negative edge triggered device.

The EL52 employs input clamping circuitry so that under open input conditions (pulled down to $V_{EE})$ the outputs of the device will remain stable.

The 100 Series contains temperature compensation.


Features

- 365 ps Propagation Delay
- 2.0 GHz Toggle Frequency
- ESD Protection:
 - ◆ > 1 kV Human Body Model
 - ♦ > 100 V Machine Model
- PECL Mode Operating Range: V_{CC} = 4.2 V to 5.7 V with V_{EE} = 0 V
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -4.2 V$ to -5.7 V
- Internal Input Pulldown Resistors on D and CLK
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity:
 - ♦ Level 1 for SOIC-8 NB
 - For Additional Information, see Application Note <u>AND8003/D</u>
- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen: Index 28 to 34
- Transistor Count = 48 Devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

SOIC-8 NB D SUFFIX CASE 751-07

MARKING DIAGRAM

K = MC100W = Work WeekA = Assembly Location• = Pb-Free Package

L = Wafer Lot

H = MC10

(Note: Microdot may be in either location) *For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping
MC10EL52DG	SOIC-8NB (Pb-Free)	98 Units/Tube

DISCONTINUED (Note 1)

MC10EL52DR2G	SOIC-8 NB (Pb-Free)	2,500 Tape & Reel
MC100EL52DG	SOIC-8 NB (Pb-Free)	98 Units/Tube

 DISCONTINUED: These devices are not recommended for new design. Please contact your onsemi representative for information. The most current information on these devices may be available on <u>www.onsemi.com</u>.

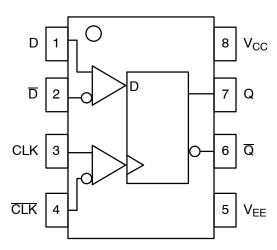


Figure 1. Logic Diagram and Pinout Assignment

Table 1. TRUTH TABLE

D*	CLK*	Q
L H	Z Z	LH

Z = LOW to HIGH Transition

* Pin will default low when left open.

Table 2. PIN DESCRIPTION

PIN	FUNCTION
D, D	ECL Data Input
CLK, CLK	ECL Clock Input
Q, <u>Q</u>	ECL Data Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V_{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE}$	6 -6	V
l _{out}	Output Current	Continuous Surge		50 100	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 NB SOIC-8 NB	190 130	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8 NB	41 to 44	°C/W
T _{sol}	Wave Solder (Pb-Free)	< 2 to 3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

		−40°C			25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
I _{EE}	Power Supply Current		21	25		21	25		21	25	mA	
V _{OH}	Output HIGH Voltage (Note 2)	3920	4010	4110	4020	4105	4190	4090	4185	4280	mV	
V _{OL}	Output LOW Voltage (Note 3)	3050	3200	3350	3050	3210	3370	3050	3227	3405	mV	
VIH	Input HIGH Voltage (Single-Ended)	3770		4110	3870		4190	3940		4280	mV	
VIL	Input LOW Voltage (Single-Ended)	3050		3500	3050		3520	3050		3555	mV	
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4) D CLK	3.4 2.5		4.6 4.4	3.4 2.5		4.6 4.4	3.4 2.5		4.6 4.4	V	
I _{IH}	Input HIGH Current			150			150			150	μA	
IIL	Input LOW Current	0.5			0.5			0.3			μA	

Table 4. 10EL SERIES PECL DC CHARACTERISTICS (V_{CC} = 5.0 V; V_{FF} = 0 V (Note 2))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.25 V / -0.5 V for +25°C and +85°C. or V_{EE} can vary +0.06 V / -0.5 V for -40°C.
Outputs are terminated through a 50 ohm resistor to V_{CC} - 2.0 V.

V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

Table 5. 10EL SERIES NECL DC CHARACTERISTICS (V_{CC} = 0 V; V_{EE} = -5.0 V (Note 1))

			−40°C		25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		21	25		21	25		21	25	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1080	-990	-890	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 2)	-1950	-1800	-1650	-1950	-1790	-1630	-1950	-1773	-1595	mV
VIH	Input HIGH Voltage (Single-Ended)	-1230		-890	-1130		-810	-1060		-720	mV
VIL	Input LOW Voltage (Single-Ended)	-1950		-1500	-1950		-1480	-1950		-1445	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4) D CLK	-1.6 -2.5		-0.4 -0.6	-1.6 -2.5		-0.4 -0.6	-1.6 -2.5		-0.4 -0.6	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.3			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

1. Input and output parameters vary 1:1 with V_{CC} .

 V_{EE} can vary +0.25 V / -0.5 V for +25°C and +85°C. or V_{EE} can vary +0.06 V / -0.5 V for -40°C.

2. Outputs are terminated through a 50 ohm resistor to $V_{CC} - 2.0 V$. 3. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V.

-40°C 25°C 85°C Characteristic Min Max Min Max Min Max Unit Symbol Тур Тур Тур Power Supply Current 21 25 21 25 24 29 mΑ IEE Output HIGH Voltage (Note 2) 3915 3995 4120 3975 4045 VOH 4120 3975 4050 4120 mV VOL Output LOW Voltage (Note 2) 3170 3305 3445 3190 3295 3380 3190 3295 3380 mV 3835 VIH Input HIGH Voltage (Single-Ended) 4120 3835 4120 3835 4120 mV VIL 3190 3525 3190 3525 3190 3525 mV Input LOW Voltage (Single-Ended) VIHCMR Input HIGH Voltage Common Mode Range v (Differential Configuration) (Note 4) D 2.6 4.6 2.6 4.6 2.6 4.6 CLK 2.5 4.2 2.5 4.2 2.5 4.2 Input HIGH Current 150 $I_{\rm H}$ 150 150 μA Input LOW Current 0.5 0.5 Ι_Ι 0.5 μΑ

Table 6. 100EL SERIES PECL DC CHARACTERISTICS (V_{CC} = 5.0 V; V_{EE} = 0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.8 V / -0.5 V.

2. Outputs are terminated through a 50 ohm resistor to V_{CC} – 2.0 V.

V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

			–40°C 25°C								
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		21	25		21	25		24	29	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
VIH	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
VIL	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4) D CLK	-2.4 -2.5		-0.4 -0.8	-2.4 -2.5		-0.4 -0.8	-2.4 -2.5		-0.4 -0.8	V
I _{IH}	Input HIGH Current			150			150			150	μA
١ _{IL}	Input LOW Current	0.5			0.5			0.5			μA

Table 7. 100EL SERIES NECL DC CHARACTERISTICS (V_{CC} = 0 V; V_{EE} = -5.0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

1. Input and output parameters vary 1:1 with V_{CC} . V_{FF} can vary +0.8 V / -0.5 V.

2. Outputs are terminated through a 50 ohm resistor to V_{CC} – 2.0 V.

V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

			−40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fmax	Maximum Toggle Frequency	1.8	2.5		2.2	2.8		2.2	2.8		GHz
t _{PLH} t _{PHL}	Propagation Delay to Output CLK		335	515	275	365	465	320	410	510	ps
t _S	Setup Time	125	0		125	0		125	0		ps
t _H	Hold Time	150	50		150	50		150	50		ps
t _{PW}	Minimum Pulse Width	400			400			400			ps
V _{PP}	Input Swing (Note 2)	150		1000	150		1000	150		1000	mV
t _{JITTER}	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
t _r t _f	Output Rise/Fall Times Q (20%-80%)	100	225	350	100	225	350	100	225	350	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

1. 10 Series: V_{EE} can vary +0.25 V / −0.5 V for +25°C and +85°C. or V_{EE} can vary +0.06 V / −0.5 V for −40°C 100 Series: V_{EE} can vary +0.8 V / −0.5 V.

2. V_{PP(}min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ~40.

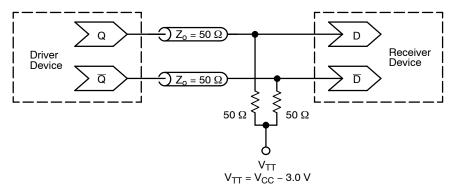
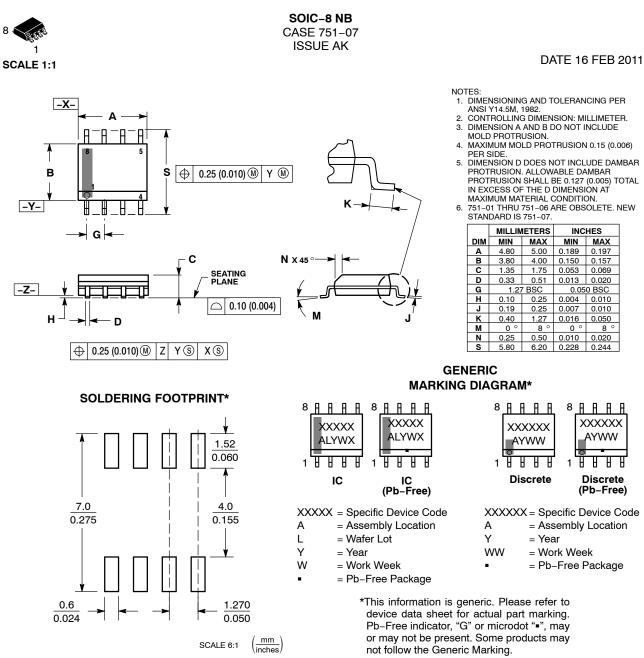


Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices)


Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices

- AND8066/D Interfacing with ECLinPS
- AND8090/D AC Characteristics of ECL Devices

ECLinPS is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

onsemi

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2				
the right to make changes without furth purpose, nor does onsemi assume ar	er notice to any products herein. onsemi make ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cour se no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	oducts for any particular				

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR 3. 4. EMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN З. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3 P-SOURCE P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE ANODE 2. SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. 8. CATHODE STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 COMMON ANODE/GND 5. 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. DRAIN, #2 4. GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. **MIRROR 1** STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT 2 OVI 0 UVLO З. 4. INPUT+ 5. 6. SOURCE SOURCE SOURCE 7. 8 DRAIN

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 З. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16 EMITTER, DIE #1 PIN 1. 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE

6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK

7. VOULK 8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

SOURCE 1/DRAIN 2

7.

8. GATE 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or others.

7.

8

COLLECTOR, #1

COLLECTOR, #1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>