JN Semiconductor® To k are more about Old Semiconductor, please visit our website at www.onsemi.com Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com. ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer January 2008 # 74LVT244, 74LVTH244 Low Voltage Octal Buffer/Line Driver with 3-STATE Outputs #### **Features** - Input and output interface capability to systems at 5V V_{CC} - Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs (74LVTH244), also available without bushold feature (74LVT244) - Live insertion/extraction permitted - Power Up/Down high impedance provides glitch-free bus loading - Outputs source/sink -32mA/+64mA - Functionally compatible with the 74 series 244 - Latch-up performance exceeds 500mA - ESD performance: - Human-body model > 2000V - Machine model > 200V - Charged-device model > 1000V # **General Description** The LVT244 and LVTH244 are octal buffers and line drivers designed to be employed memory address drivers, clock drivers and bus enter ransmitters or receivers which provide improve C box density. The LVTH244 data in. is in ide if old, elinimating the need for external properties to hold unused inputs. These oc 1 but is and the drivers are designed for low-voltice (3...1) Volume reactions, but with the capability to row the interface to a 57 environment. The LVT244 of Lorentz TH24- are fabricated with an advanced BiCMOS technology to achieve high specific peration sin har to 5V AB1 hille maintaining low power dissipation. # Ordering Informa on | | Pa age | 2 K K K CO' | |---------------|--------|---| | Order Num' er | Mulhi. | Package Description | | 74LVT244 M | 20B | 20- Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide | | 7 _VI2 1S2 | M20D | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide | | VT24 ISA | MSA2ป | 20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide | | 74L TO +MTC | MTC20 | 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm | | | OL | Wide | | 74LVTh?44WM | M20B | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide | | 74LVT!1244SJ | M25D | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide | | 74LVTH244MSA | MCA20 | 20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide | | 74LVTH244MTC | MTC20 | 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide | Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number. All packages are lead free per JEDEC: J-STD-020B standard. # **Connection Diagram** # **Pin Description** | Pin Names | Description | | |---------------------------------------|------------------------------|--| | \overline{OE}_1 , \overline{OE}_2 | 3-STATE Output Enable Inputs | | | I ₀ –I ₇ | Inputs | | | O ₀ –O ₇ | Output | | # **Logic Symbol** # Truth Tables | Inputs
OE ₁ I _n | Outputs
(Pins 12, 14, 16, 18) | |--|----------------------------------| | L W | L | | OL SCH | Н | | X H | Z | | Inp | uts | Outputs | |-----------------|-----|-------------------| | OE ₂ | In | (Pins 3, 5, 7, 9) | | L | L | L | | L | Н | Н | | Н | Х | Z | H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance # **Absolute Maximum Ratings** Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. | Symbol | Parameter | Rating | |------------------|---|--------------------| | V _{CC} | Supply Voltage | -0.5V to +4.6V | | V _I | DC Input Voltage | -0.5V to +7.0V | | Vo | DC Output Voltage | | | | Output in 3-STATE | -0.5V to +7.0V | | | Output in HIGH or LOW State ⁽¹⁾ | -0.5V to +7.0V | | I _{IK} | DC Input Diode Current, V _I < GND | -50mA | | I _{OK} | DC Output Diode Current, V _O < GND | -50mA | | Io | DC Output Current, V _O > V _{CC} | | | | Output at HIGH State | 64mA | | | Output at LOW State | 128mA | | I _{CC} | DC Supply Current per Supply Pin | ±64mA | | I _{GND} | DC Ground Current per Ground Pin | ±128mA | | T _{STG} | Storage Temperature | -65° C tc → 150° C | #### Note: 1. In Absolute Maximum Rating must be of a ved. # Recommended Operation Corditions The Recommended Oproving Conditions able defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend excretely a more signing to assolute maximum ratings. | Symb | Paranteter | Min | Max | Units | |--------|---|-----|-----|-------| | | Single oltage | 2.7 | 3.6 | V | | VI | nput Voltage | 0 | 5.5 | V | | ГОН | HIGH Level Output Current | | -32 | mA | | JL J | LOW-Leve! Output Current | | 64 | mA | | TA | Free-Air Operating Temperature | -40 | 85 | °C | | Δ+/ ΔV | Input Edge Rate, $V_{IN} = 0.8V-2.0V$, $V_{CC} = 3.0V$ | 0 | 10 | ns/V | ## **DC Electrical Characteristics** | | Vcc | | T A =- | 40°C to + | 85°C | | | |---------------------------|--|---|--|--|------------|---|--| | Parameter | (V) | Conditions | Min. | Typ. ⁽²⁾ | Max. | Units | | | Input Clamp Diode Voltage | 2.7 | I _I = -18mA | | | -1.2 | V | | | Input HIGH Voltage | 2.7–3.6 | $V_0 \le 0.1V$ or | 2.0 | | | V | | | Input LOW Voltage | 2.7–3.6 | $V_O \ge V_{CC} - 0.1V$ | | | 0.8 | V | | | Output HIGH Voltage | 2.7–3.6 | $I_{OH} = -100 \mu A$ | V _{CC} -0.2 | | | V | | | | 2.7 | $I_{OH} = -8mA$ | 2.4 | | | | | | | 3.0 | $I_{OH} = -32mA$ | 2.0 | | | | | | Output LOW Voltage | 2.7 | $I_{OL} = 100 \mu A$ | | | 0.2 | V | | | | | I _{OL} = 24mA | | | 0.5 | | | | | 3.0 | I _{OL} = 16mA | | | 0.4 | 5 | | | | | $I_{OL} = 32mA$ | | | 0.5 | | | | | | I _{OL} = 64mA | | | 0.55 | | | | Bushold Input Minimum | 3.0 | V _I = 0.8V | 75 | | 1 | μA | | | Drive | | V _I = 2.0V | -75 | 190 | | | | | Bushold Input Over-Drive | 3.0 | (4) | 500 | | | μA | | | Current to Change State | | | -5υύ | 9(1) | | 7 | | | Input Current | 3.5 | - 5.5V | | 5 1 | 10 | μA | | | Control Pins | 3.0 | V _I = V or V _{CC} | 0/ | 10 | ±1 | | | | Data Pins | | $V_I = 0V$ | 2 | 5/4 | -5 | | | | | | V _I = V _{C()} | Z.0 | | 1 | | | | Power Off Leakage Irrent | U | $uV \le V_1 \text{ or } V_0 \le 5.5V$ | 71 | | ±100 | μA | | | Power up/ Jwn 3-STA | 0-1.5V | $V_0 = 0.5 \text{V to } 3.0 \text{V},$ | | | ±100 | μA | | | | 6 | | | | | | | | STATE O. ut lakage | 3.6 | $V_0 = 0.5V$ | | | – 5 | μA | | | 2 CTATE vutnut l 22 vara | (30) | W 10V | | | - | | | | | 3.6 | V _C = 3.0V | | | 5 | μA | | | | 3.6 | $V_{CC} \leq V_O \leq 5.5V$ | | | 10 | μA | | | Current | W. | | | | | | | | Power Supply Current | 3.6 | Outputs HIGH | | | 0.19 | mA | | | Power Supply Cur ent | 3.6 | Outputs LOW | | | 5 | mA | | | Power Supply Current | 3.6 | Outputs Disabled | | | 0.19 | mA | | | Power Surply Current | 3.6 | $V_{CC} \le V_O \le 5.5V$, | | | 0.19 | mA | | | | | Outputs Disabled | | | | | | | Increase in Power Supply | 3.6 | One Input at V _{CC} – 0.6V, | | | 0.2 | mA | | | Current | | Other Inputs at V _{CC} or GND | | | | | | | | Input Clamp Diode Voltage Input HIGH Voltage Input LOW Voltage Output HIGH Voltage Output LOW Voltage Bushold Input Minimum Drive Bushold Input Over-Drive Current to Change State Input Current Control Pins Data Pins Power Off Leakage Irrent Power up/ Jwn 3-STA Output C 'ent STATE Output Leakage Unitent 3-STATE Jutput Leakage Current Power Supply Current | Input Clamp Diode Voltage Input HIGH Voltage Input LOW Voltage Output HIGH Voltage 2.7–3.6 2.7 3.0 Output LOW Voltage 2.7 3.0 Output LOW Voltage 2.7 3.0 Output LOW Voltage 2.7 3.0 Bushold Input Minimum Drive Bushold Input Over-Drive Current to Change State Input Current Control Pins Data Pins Power Up Dwn 3-STA Output C ent STATE Output Leakage Turrent 3.6 3-STATE Output Leakage Current Power Supply Current 3.6 Increase in Power Supply 3.6 Increase in Power Supply 3.6 Increase in Power Supply 3.6 | $ \begin{array}{ c c c c } \hline \textbf{Parameter} & \textbf{(V)} & \textbf{Conditions} \\ \hline \textbf{Input Clamp Diode Voltage} & 2.7 & \textbf{I}_{1} = -18 \text{mA} \\ \hline \textbf{Input HIGH Voltage} & 2.7-3.6 & \textbf{V}_{O} \leq 0.1 \text{V or} \\ \hline \textbf{Input LOW Voltage} & 2.7-3.6 & \textbf{I}_{OH} = -100 \mu \text{A} \\ \hline \textbf{2.7} & \textbf{I}_{OH} = -8 \text{mA} \\ \hline \textbf{3.0} & \textbf{I}_{OH} = -32 \text{mA} \\ \hline \textbf{3.0} & \textbf{I}_{OH} = -32 \text{mA} \\ \hline \textbf{3.0} & \textbf{I}_{OL} = 24 \text{mA} \\ \hline \textbf{3.0} & \textbf{I}_{OL} = 16 \text{mA} \\ \hline \textbf{I}_{OL} = 32 30 \text{mA} \\ \hline \textbf{I}_{OL} = 32 \textbf{I}_$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Parameter | Parameter (V) Conditions Min. Typ. (2) Max. | | #### Notes: - 2. All typical values are at $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$. - 3. Applies to bushold versions only (74LVTH244). - 4. An external driver must source at least the specified current to switch from LOW-to-HIGH. - 5. An external driver must sink at least the specified current to switch from HIGH-to-LOW. - 6. This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND. # Dynamic Switching Characteristics⁽⁷⁾ | | | | Conditions | T _A = 25°C | | 2 | | |------------------|---|---------------------|---------------------------------|-----------------------|------|------|-------| | Symbol | Parameter | V _{CC} (V) | $C_L = 50 pF, R_L = 500 \Omega$ | Min. | Тур. | Max. | Units | | V _{OLP} | Quiet Output Maximum
Dynamic V _{OL} | 3.3 | (8) | | 0.8 | | V | | V _{OLV} | Quiet Output Minimum
Dynamic V _{OL} | 3.3 | (8) | | -0.8 | | V | #### Notes: - 7. Characterized in SOIC package. Guaranteed parameter, but not tested. - 8. Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW. ## **AC Electrical Characteristics** | | | | T _A = -
C _L = 5 | -40°C 'o - | \rightarrow | N | Or | |---------------------------------------|-----------------------------------|-----------------|--|------------|-------------------|------|-------| | | | V _{cc} | = 3.31 | 0. 1 | √ _{CC} = | 2.7Y | | | Symbol | Parameter | Min. | (9) | N. | Min. | Max. | Units | | t _{PLH} | Propagation Delay, Data to Output | 1 | | 3.8 | 1.1 | 4.0 | ns | | t _{PHL} | | 3 | | 5.9 | 1.3 | 4.2 | | | t _{PZH} | Output Enable Time | 1. | | 4.5 | 1.1 | 5.3 | ns | | t _{PZL} | | 1.4 | | 4.4 | 1.4 | 5.0 | | | t _{PHZ} | Output Disable Time | 1.9 | | 4.9 | 1.9 | 5.1 | ns | | t _{PLZ} | | 1.8 | | 4.4 | 1.8 | 4.4 | | | t _{OSHL} , t _{OSLH} | Output to an at S v(10) | 0,, | | 1.0 | | 1.0 | ns | #### Notes: - 9. All typical values are $\frac{1}{2}$ 3.3V T_A = 25°C. - 10. Skew de. as absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, or the same direction, or LOW-to-HIGH (t_{CCLH}). Parameter guaranteed by design. # Cap Litange (11) | Symbol | Pararieter | Conditions | Typical | Units | |------------------|--------------------|--|---------|-------| | C _{IN} | Input Capacitance | $V_{CC} = 0V$, $V_I = 0V$ or V_{CC} | 3 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = 3.0V$, $V_{O} = 0V$ or V_{CC} | 6 | pF | ## Note: 11. Capacitance is measured at frequency f = 1MHz, per MIL-STD-883, Method 3012. Figure 1. 20-Levi Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ # Physical Dimensions (Continued) 12.6±0.10 0.40 TYP -A-20 11 12 11 5.01 TYP 5.3±0.10 9.27 TYP 7.8 -B-3.9 (2.13)△ 0.2 C B A ALL LEAD TIPS 10 PIN #1 IDENT. J.6 TYP 1.27 ALL LEAD TIPS △ 0.1 C 2.1 MAX.--C-0.15 - 0.255.35-0.51 1.27 TYP 7° TYP ARE IN MILLIMATER GAGE PLANE 0°-8° TYP CONFORMS TO LIAU EDG-7320 REGISTRATION ESTABLISHED IN DECEMBER, 1998. D.Y.L.NSIONS ARE EXCLUSIVE OF TULYRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. 0.60 ± 0.15 SEATING PLANE 1.25 -DETAIL A M20DREVC Figure 2. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ # Physical Dimensions (Continued) 7.2±0.30 0.68 TYP В 9.12 5.58 5.3±0.30 7.8 10 3.9 ○ 0.2 C A B PIN #1 IDENT. RECOMMENDATIONS △ 0.10 C ALL LEAD TIPS 1.75±u 2.0 MAX. 0.65 TYP 0.15M L NOTES - NFORMS TO JEDIC REGISTRATION ARIATION AC, LATE 1/94. - DIMENSIONS ARE IN MILLINIZIERS. DIN'ELISIONS ARE FACLUSIVE C: DURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS CIMENSIONS AND TOLERAILC'S PER ASME Y14.5M - 1994. ## Figure 3. 20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ SA20REVB # Physical Dimensions (Continued) 5.5±0.1 -A--0.20 وحا 4.16 6,4 4.4±0.1 -B-3,2 0.2 C B A 0.65 ALL LEAD PIN #1 IDENT. O.1 C 0.90 1.2 -C-0.09-0.20 0.05 0.65 . . . A. CONFORMS TO JEDEC REDISTRATION MIL-133 VARIATION ACRES NOTE 6, DATE 7/93. P. D'MENSIONS ARE IN MILLIMETERS. - C. JIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS - D. DIMENSIONS AND TO ERANCES PER ANSI Y14.5M, 1982. - 8°7 - GAGE PLANE - 8°7 - GAGE PLANE - 0.6±0.1- SEATING PLANE - R0.09min DETAIL A MTC20REVD1 ## Figure 4. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ #### **TRADEMARKS** The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. ACEx[™] Build it Now[™] CorePLUS[™] CROSSVOLT[™] CTL[™] Current Transfer Logic™ EcoSPARK® EZSWITCH™ * EZSWIT Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series[™] FACT[®] FAST[®] FastvCore[™] FlashWriter[®]* FPS™ FRFET® Global Power Resource^{sм} Green FPS™ Green FPS™e-Series™ GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP-SPM™ Power220® POWEREDGE® Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START¹ SPM® STEA¹ TH¹ SuperF T™ -SO 143 Serc S Su_k SOT 1-8 SupreMOSTM SyncFETTM SYSTEM ® GENERAL The Power Franchise® P Wer' Thise of the control Ultra FRFET™ Ur.:F.;T™ /CX™ #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERV" RIC TTO... (E CHA 'C'-S WITHO'L) FURTHER NOT CE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FI CTION, RL 3IGN. FAIR CHILD DOES NOT A SSUME AN 'LL'ABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OF THE CONTRACT CONTR #### LIFE SUPPORT OLICY FAIRCHILE PLANT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS V. HOUT THE XPRESS VIRI TEN APPROVAL OF TAIRCHILD SEMICONDUCTOR CORPORATION. ' used i in Life s por devices or systems are devices or systems thich a) are intended for surgical implant into the body or upport or suscial life, and (c) whose failure to perform when properly used in accordance with a structions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ## PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|------------------------|--| | Advance Information | Formative or In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only. | Rev. I33 ^{*} EZSWITCH™ and FlashWriter® are trademarks of Sintem General Col, ration, used under licence in Fairchild Semiconductor. ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative