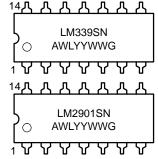
Single Supply Quad Comparators

These comparators are designed for use in level detection, low-level sensing and memory applications in consumer and industrial electronic applications.

Features

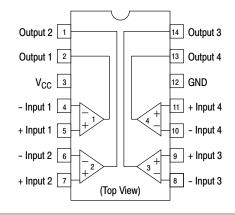
- Single or Split Supply Operation
- Low Input Bias Current: 25 nA (Typ)
- Low Input Offset Current: ±5.0 nA (Typ)
- Low Input Offset Voltage
- Input Common Mode Voltage Range to GND
- Low Output Saturation Voltage: 130 mV (Typ) @ 4.0 mA
- TTL and CMOS Compatible
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

CASE 646


LMxxxx = Specific Device Code

A = Assembly Location

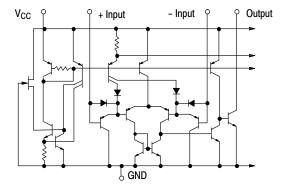
WL = Wafer Lot Y, YY = Year

WW = Work Week
G = Pb-Free Package

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.


MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Power Supply Voltage		V _{CC}	+36 or ±18	Vdc
Input Differential Voltage Range		V_{IDR}	36	Vdc
Input Common Mode Voltage Range		V _{ICMR}	−0.3 to V _{CC}	Vdc
Output Short Circuit to Ground (Note 1)		I _{sc}	Continuous	
Power Dissipation @ T _A = 25°C	Plastic Package Derate above 25°C	P _D 1/R _{θJA}	1.0 8.0	W mW/°C
Junction Temperature		TJ	150	°C
Operating Ambient Temperature Range	LM2901S LM339S	T _A	-40 to +105 0 to +70	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The maximum output current may be as high as 20 mA, independent of the magnitude of V_{CC}. Output short circuits to V_{CC} can cause excessive

heating and eventual destruction.

NOTE: Diagram shown is for 1 comparator.

Figure 1. Circuit Schematic

ELECTRICAL CHARACTERISTICS ($V_{CC} = +5.0 \text{ Vdc}$, $T_A = +25^{\circ}\text{C}$, unless otherwise noted)

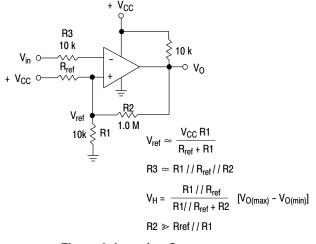
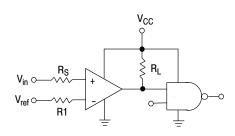
			LM339S		L	M2901	3	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (Note 2)	V _{IO}	-	±2.0	±5.0	_	±2.0	±7.0	mVdc
Input Bias Current (Notes 2, 3) (Output in Analog Range)	I _{IB}	-	25	250	-	25	250	nA
Input Offset Current (Note 2)	I _{IO}	_	±5.0	±50	_	±5.0	±50	nA
Input Common Mode Voltage Range	V _{ICMR}	0	-	V _{CC} -1.5	0	-	V _{CC} -1.5	V
Supply Current	Icc							mA
$R_L = \infty$ (For All Comparators)		-	0.8	2.0	_	0.8	2.0	
$R_L = \infty$, $V_{CC} = 30 \text{ Vdc}$		-	1.0	2.5	_	1.0	2.5	
Voltage Gain $R_L \geq 15 \; k\Omega, \; V_{CC} = 15 \; Vdc$	A _{VOL}	50	200	-	25	100	-	V/mV
Large Signal Response Time $V_{I} = TTL \ Logic \ Swing, \ V_{ref} = 1.4 \ Vdc, \ V_{RL} = 5.0 \ Vdc, \\ R_{L} = 5.1 \ k\Omega$	-	_	200	-	_	200	-	ns
Response Time (Note 4) $V_{RL} = 5.0 \text{ Vdc}, R_L = 5.1 \text{ k}\Omega$	-	_	1.0	-	-	1.0	-	μs
Output Sink Current $V_{I}(-) \ge +1.0 \text{ Vdc}, V_{I}(+) = 0, V_{O} \le 1.5 \text{ Vdc}$	I _{Sink}	6.0	16	-	6.0	16	-	mA
Saturation Voltage $V_I(-) \ge +1.0 \text{ Vdc}, V_I(+) = 0, I_{sink} \le 4.0 \text{ mA}$	V _{sat}	_	130	400	-	130	400	mV
Output Leakage Current $V_I(+) \ge +1.0 \text{ Vdc}, V_I(-) = 0, V_O = +5.0 \text{ Vdc}$	I _{OL}	_	0.1	_	_	0.1	-	nA

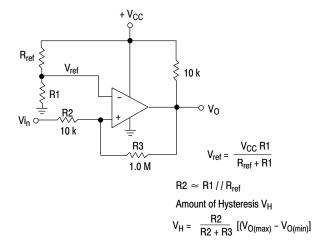
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. At the output switch point, V_O ≈ 1.4 Vdc, R_S ≤ 100 Ω 5.0 Vdc ≤ V_{CC} ≤ 30 Vdc, with the inputs over the full common mode range (0 Vdc to V_{CC} −1.5 Vdc).
3. The bias current flows out of the inputs due to the PNP input stage. This current is virtually constant, independent of the output state.
4. The response time specified is for a 100 mV input step with 5.0 mV overdrive. For larger signals, 300 ns is typical.

PERFORMANCE CHARACTERISTICS ($V_{CC} = +5.0 \text{ Vdc}$, $T_A = T_{low} \text{ to } T_{high} \text{ (Note 5))}$

		LM339S		LM2901S				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (Note 6)	V _{IO}	_	-	±9.0	_	_	±15	mVdc
Input Bias Current (Notes 6, 7) (Output in Analog Range)	I _{IB}	-	-	400	-	-	500	nA
Input Offset Current (Note 6)	I _{IO}	-	-	±150	-	-	±200	nA
Input Common Mode Voltage Range	V _{ICMR}	0	-	V _{CC} –2.0	0	-	V _{CC} -2.0	V
Saturation Voltage $V_I(-) \ge +1.0 \text{ Vdc}, V_I(+) = 0, I_{sink} \le 4.0 \text{ mA}$	V _{sat}	-	-	700	-	-	700	mV
Output Leakage Current $V_I(+) \ge +1.0 \text{ Vdc}, V_I(-) = 0, V_O = 30 \text{ Vdc}$	l _{OL}	-	1	1.0	ı	-	1.0	μΑ
Differential Input Voltage All $V_l \ge 0$ Vdc	V _{ID}	_	_	V _{CC}	_	_	V _{CC}	Vdc

- (LM339S) $T_{low} = 0^{\circ}C$, $T_{high} = +70^{\circ}C$ (LM2901S) $T_{low} = -40^{\circ}C$, $T_{high} = +105^{\circ}C$ At the output switch plant, $V_{O} \simeq 1.4$ Vdc, $R_{S} \le 100~\Omega$ 5.0 Vdc $\le V_{CC} \le 30$ Vdc, with the inputs over the full common mode range (2) Vdc $\le V_{CC} \le 30$ Vdc, with the inputs over the full common mode range (0 Vdc to \dot{V}_{CC} –1.5 \dot{V} dc).
- 7. The bias current flows out of the inputs due to the PNP input stage. This current is virtually constant, independent of the output state.

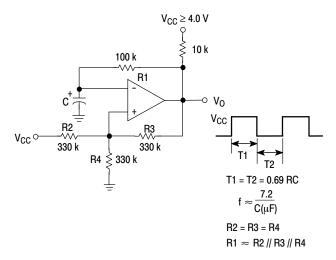

Figure 2. Inverting Comparator with Hysteresis

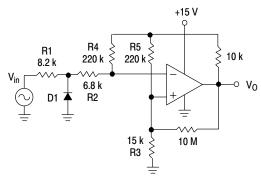
R_S = Source Resistance $R1 \simeq R_S$

Logic	Device	V _{CC} (V)	R _L kΩ
CMOS	1/4 MC14001	+15	100
TTL	1/4 MC7400	+5.0	10

Figure 4. Driving Logic

Figure 3. Noninverting Comparator with Hysteresis



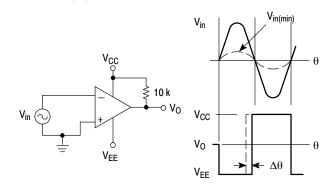

Figure 5. Squarewave Oscillator

APPLICATIONS INFORMATION

These quad comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (V_{OL} to V_{OH}). To alleviate this situation input resistors < 10 k Ω should be used. The

addition of positive feedback (< 10 mV) is also recommended. It is good design practice to ground all unused input pins.

Differential input voltages may be larger than supply voltages without damaging the comparator's inputs. Voltages more negative than -300 mV should not be used.



D1 prevents input from going negative by more than 0.6 V.

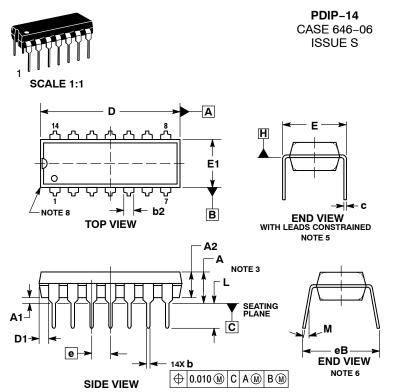
$$R1 + R2 = R3$$

 $R3 \le \frac{R5}{10}$ for small error in zero crossing

Figure 6. Zero Crossing Detector (Single Supply)

 $V_{in(min)} \approx 0.4 \text{ V peak for 1\% phase distortion } (\Delta\theta).$

Figure 7. Zero Crossing Detector (Split Supplies)

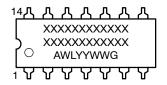

ORDERING INFORMATION

Device	Package	Shipping [†]
LM339SNG	PDIP-14 (Pb-Free)	25 Units / Rail
LM2901SNG	PDIP-14 (Pb-Free)	25 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DATE 22 APR 2015

NOTES:


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3. DIMENSIONS D, D1 AND E1 D0 NOT INCLUDE MOLD FLASH
- OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH.
- DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
 DIMENSION & B IS MEASURED AT THE LEAD TIPS WITH THE
- DIMENSION BY IS MEASURED AT THE LEAD TIFS WITH THE LEADS UNCONSTRAINED.

 DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.

 PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α		0.210		5.33
A1	0.015		0.38	
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060	060 TYP 1.52 TYP		TYP
С	0.008	0.014	0.20	0.36
D	0.735	0.775	18.67	19.69
D1	0.005		0.13	
E	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
е	0.100	BSC	2.54	BSC
eВ		0.430		10.92
L	0.115	0.150	2.92	3.81
M		10°		10°

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

WL = Wafer Lot YY = Year WW = Work Week = Pb-Free Package G

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42428B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PDIP-14		PAGE 1 OF 2		

onsemi and Onsemi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

PDIP-14 CASE 646-06 ISSUE S

DATE 22 APR 2015

STYLE 1: PIN 1. COLLECTOR 2. BASE 3. EMITTER 4. NO CONNECTION 5. EMITTER 6. BASE 7. COLLECTOR 8. COLLECTOR 9. BASE 10. EMITTER 11. NO CONNECTION 12. EMITTER 13. BASE 14. COLLECTOR	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. DRAIN 2. SOURCE 3. GATE 4. NO CONNECTION 5. GATE 6. SOURCE 7. DRAIN 8. DRAIN 9. SOURCE 10. GATE 11. NO CONNECTION 12. GATE 13. SOURCE 14. DRAIN
STYLE 5: PIN 1. GATE 2. DRAIN 3. SOURCE 4. NO CONNECTION 5. SOURCE 6. DRAIN 7. GATE 8. GATE 9. DRAIN 10. SOURCE 11. NO CONNECTION 12. SOURCE 13. DRAIN 14. GATE	STYLE 6: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 7: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 8: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 9: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE	STYLE 10: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 11: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 12: PIN 1. COMMON CATHODE 2. COMMON ANODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. COMMON ANODE 7. COMMON CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE 15. ANODE/CATHODE 16. ANODE/CATHODE 17. ANODE/CATHODE 18. ANODE/CATHODE 19. ANODE/CATHODE 19. ANODE/CATHODE 19. ANODE/CATHODE

DOCUMENT NUMBER:	98ASB42428B	Electronic versions are uncontrolled except when accessed directly from the Document F Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PDIP-14		PAGE 2 OF 2		

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales