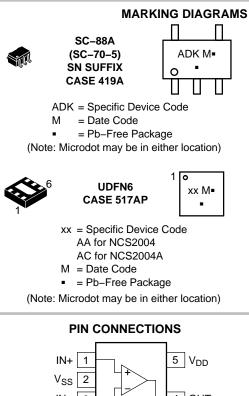
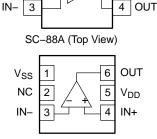
Operational Amplifier, Rail-to-Rail, 3.5 MHz, Wide Supply

The NCS2004 operational amplifier provides rail-to-rail output operation. The output can swing within 70 mV to the positive rail and 30 mV to the negative rail. This rail-to-rail operation enables the user to make optimal use of the entire supply voltage range while taking advantage of 3.5 MHz bandwidth. The NCS2004 can operate on supply voltage as low as 2.5 V over the temperature range of -40° C to 125°C. The high bandwidth provides a slew rate of 2.4 V/µs while only consuming a typical 390 µA of quiescent current. Likewise the NCS2004 can run on a supply voltage as high as 16 V making it ideal for a broad range of battery operated applications. Since this is a CMOS device it has high input impedance and low bias currents making it ideal for interfacing to a wide variety of signal sensors. In addition it comes in either a small SC–88A or UDFN package allowing for use in high density PCB's.

Features

- Rail-To-Rail Output
- Wide Bandwidth: 3.5 MHz
- High Slew Rate: 2.4 V/µs
- Wide Power Supply Range: 2.5 V to 16 V
- Low Supply Current: 390 μA
- Low Input Bias Current: 45 pA
- Wide Temperature Range: -40°C to 125°C
- Small Packages: 5–Pin SC–88A and UDFN6 1.6x1.6
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


Applications


- Notebook Computers
- Portable Instruments

ON Semiconductor®

www.onsemi.com

UDFN (Top View)

ORDERING INFORMATION

Device	Package	Shipping [†]
NCS2004SQ3T2G	SC-88A (Pb-Free)	3000 / Tape & Reel
NCS2004MUTAG, NCS2004AMUTAG	UDFN6 (Pb–Free)	3000 / Tape & Reel

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V _{DD}	Supply Voltage	16.5	V
V _{ID}	Input Differential Voltage	± Supply Voltage	V
VI	Input Common Mode Voltage Range	-0.2 V to (V _{DD} + 0.2 V)	V
I _I	Maximum Input Current	±10	mA
Ι _Ο	Output Current Range	±100	mA
	Continuous Total Power Dissipation (Note 1)	200	mW
TJ	Maximum Junction Temperature	150	°C
θ_{JA}	Thermal Resistance	333	°C/W
T _{stg}	Operating Temperature Range (free-air)	-40 to 125	°C
T _{stg}	Storage Temperature	-65 to 150	°C
	Mounting Temperature (Infrared or Convection – 20 sec)	260	°C
V _{ESD}	Machine Model Human Body Model	300 2000	V

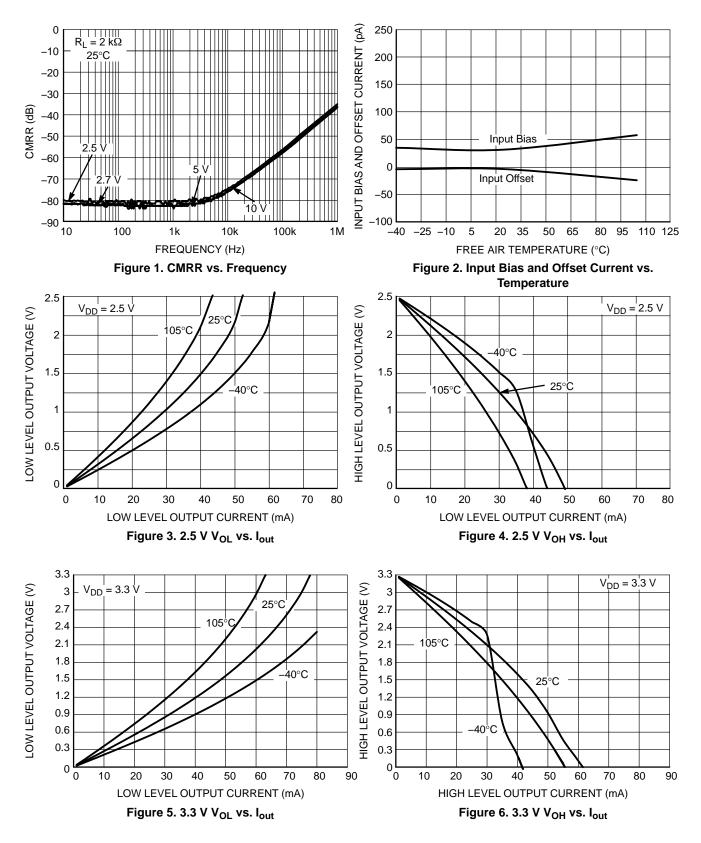
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

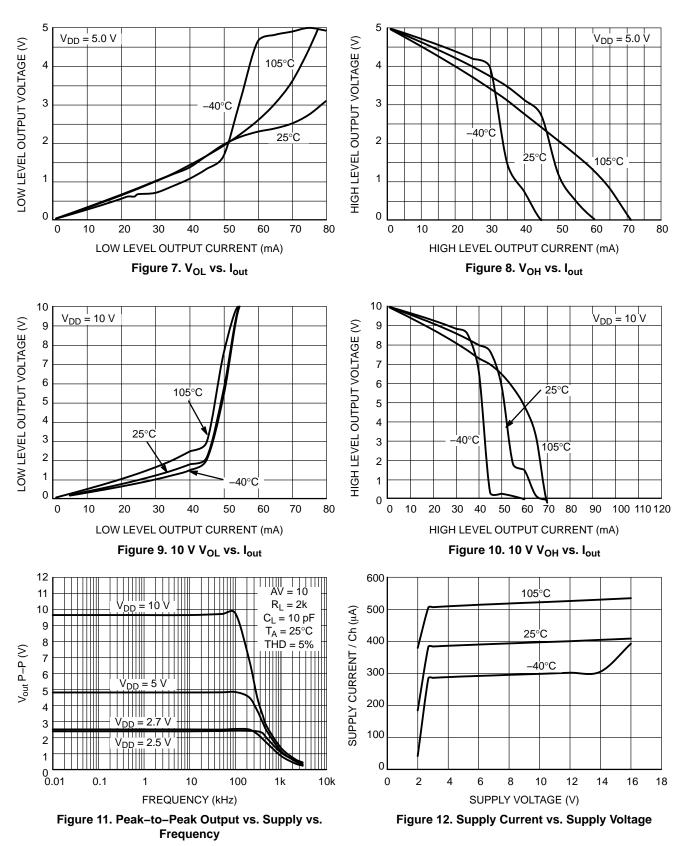
 Continuous short circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability. Shorting output to either V+ or V- will adversely affect reliability.

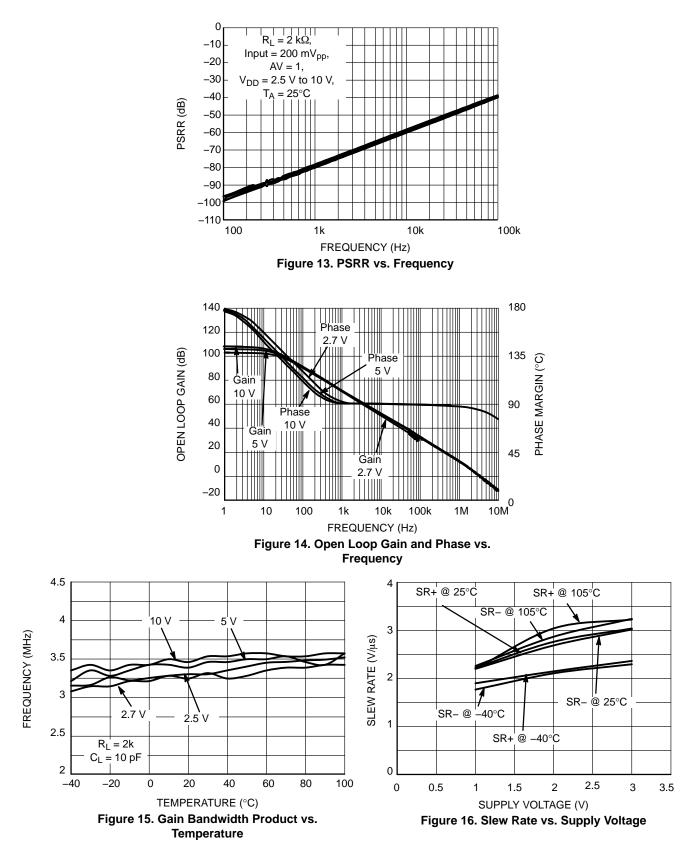
DC ELECTRICAL CHARACTERISTICS (V_{DD} = 2.5 V, 3.3 V, 5 V and ± 5 V, T_A = 25°C, R_L \geq 10 k Ω unless otherwise noted)

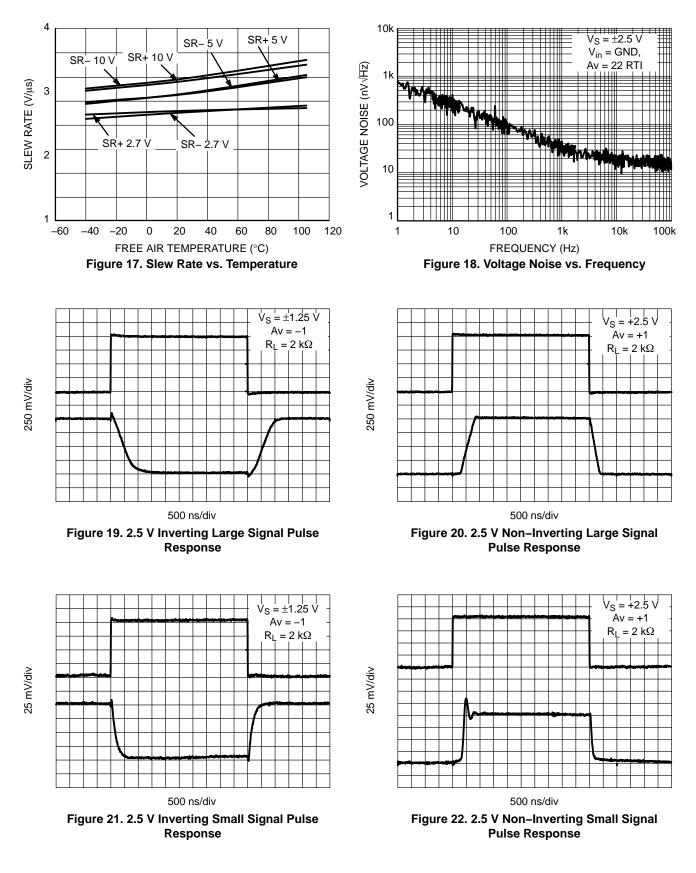
Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	VIC = $V_{DD}/2$, $V_O = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$, R_S	; = 50 Ω		0.5	5.0	mV
(NCS2004)		$T_A = -40^{\circ}C$ to $+125^{\circ}C$				7.0	
Input Offset Voltage	V _{IO}	VIC = $V_{DD}/2$, $V_O = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$, R_S	; = 50 Ω			3.0	mV
(NCS2004A)		$T_A = -40^{\circ}C$ to $+125^{\circ}C$				5.0	
Offset Voltage Drift	ICV _{OS}	VIC = $V_{DD}/2$, $V_O = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$, R_S	; = 50 Ω		2.0		μV/°C
Common Mode	CMRR	0 V \leq VIC \leq V_{DD} – 1.35 V, R_S = 50 Ω	V _{DD} = 2.5 V	55	94		dB
Rejection Ratio		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		52			
		0 V \leq VIC \leq V_{DD} – 1.35 V, R_S = 50 Ω	$V_{DD} = 5 V$	65	130		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		62			
		0 V \leq VIC \leq V_{DD} – 1.35 V, R_S = 50 Ω	$V_{DD} = \pm 5 V$	69	140		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		66			
Power Supply Rejection Ratio	PSRR	V_{DD} = 2.5 V to 16 V, VIC = $V_{DD}/2$, No Load		70	135		dB
Rejection Ratio		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$					
Large Signal Voltage Gain	A _{VD}	$V_{O(pp)} = V_{DD}/2, R_L = 10 \text{ k}\Omega$	$V_{DD} = 2.5 V$	90	130		dB
Voltage Gain		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		76			
		$V_{O(pp)} = V_{DD}/2, R_L = 10 \text{ k}\Omega$	V _{DD} = 3.3 V	92	123		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		76			
		$V_{O(pp)} = V_{DD}/2, R_L = 10 \text{ k}\Omega$	V _{DD} = 5 V	95	127		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		86			
		$V_{O(pp)} = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$	$V_{DD} = \pm 5 V$	95	130		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		90			

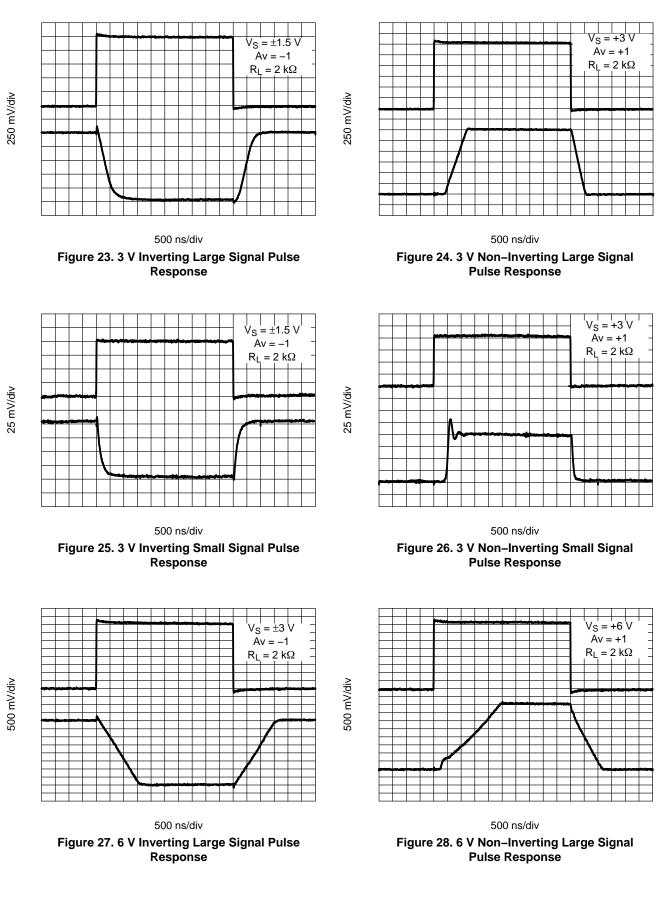
Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Input Bias Current	I _B	$V_{DD} = 5 V, VIC = V_{DD}/2, V_{O} = V_{DD}/2,$	$T_A = 25^{\circ}C$		45	150	pА
		R _S = 50 Ω	T _A = 125°C			1000	
Input Offset Current	I _{IO}	$V_{DD} = 5 V, VIC = V_{DD}/2, V_{O} = V_{DD}/2,$	$T_A = 25^{\circ}C$		45	150	pА
		R _S = 50 Ω	T _A = 125°C			1000	
Differential Input Resistance	r _{i(d)}				1000		GΩ
Common-mode Input Capacitance	C _{IC}	f = 21 kHz			8.0		pF
Output Swing	V _{OH}	$VIC = V_{DD}/2$, $I_{OH} = -1$ mA	V _{DD} = 2.5 V	2.35	2.43		V
(High–level)		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		2.28			
		$VIC = V_{DD}/2$, $I_{OH} = -1$ mA	V _{DD} = 3.3 V	3.15	3.21		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		3.00			
		$VIC = V_{DD}/2$, $I_{OH} = -1$ mA	V _{DD} = 5 V	4.8	4.93		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		4.75			
		$VIC = V_{DD}/2$, $I_{OH} = -1$ mA	$V_{DD} = \pm 5 V$	4.92	4.96		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		4.9			
		$VIC = V_{DD}/2$, $I_{OH} = -5$ mA	V _{DD} = 2.5 V	1.7	2.14		V
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		1.5			
		$VIC = V_{DD}/2$, $I_{OH} = -5$ mA	V _{DD} = 3.3 V	2.5	2.89		
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$		2.1			
		$VIC = V_{DD}/2$, $I_{OH} = -5$ mA	V _{DD} = 5 V	4.5	4.68		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		4.35			
		$VIC = V_{DD}/2$, $I_{OH} = -5$ mA	$V_{DD} = \pm 5 V$	4.7	4.78		1
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		4.65			
Output Swing	V _{OL}	$VIC = V_{DD}/2$, $I_{OL} = -1$ mA	V _{DD} = 2.5 V		0.03	0.15	V
(Low-level)		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$				0.22	
		$VIC = V_{DD}/2$, $I_{OL} = -1$ mA	V _{DD} = 3.3 V		0.03	0.15	
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$				0.22	
		$VIC = V_{DD}/2$, $I_{OL} = -1$ mA	V _{DD} = 5 V		0.03	0.1	
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$				0.15	
		$VIC = V_{DD}/2$, $I_{OL} = -1$ mA	$V_{DD} = \pm 5 V$		0.05	0.08	1
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$				0.1	
		$VIC = V_{DD}/2$, $I_{OL} = -5$ mA	V _{DD} = 2.5 V		0.15	0.7	V
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$				1.1	
		$VIC = V_{DD}/2$, $I_{OL} = -5 \text{ mA}$	V _{DD} = 3.3 V		0.13	0.7	
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$	7			1.1	
		$VIC = V_{DD}/2$, $I_{OL} = -5$ mA	V _{DD} = 5 V		0.13	0.4	
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$	7			0.5	
		$VIC = V_{DD}/2$, $I_{OL} = -5$ mA	$V_{DD} = \pm 5 V$		0.16	0.3	
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$	1			0.35	

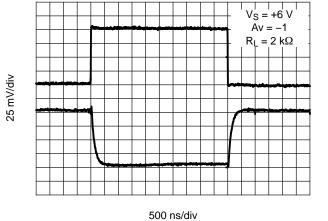

DC ELECTRICAL CHARACTERISTICS (V_{DD} = 2.5 V, 3.3 V, 5 V and ± 5 V, T_A = 25°C, R_L \geq 10 k Ω unless otherwise noted)

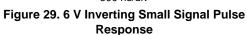

Parameter	Symbol	Conditions	Conditions		Тур	Max	Unit
Output Current	Ι _Ο	V_{O} = 0.5 V from rail, V_{DD} = 2.5 V	Positive rail		4.0		mA
			Negative rail		5.0		
		V_{O} = 0.5 V from rail, V_{DD} = 5 V	Positive rail		7.0		
			Negative rail		8.0		
		$V_{O} = 0.5 \text{ V}$ from rail, $V_{DD} = 10 \text{ V}$	Positive rail		13		
		-	Negative rail		12		
Power Supply	I _{DD}	$V_{O} = V_{DD}/2$	V _{DD} = 2.5 V		380	560	μA
Quiescent Current			V _{DD} = 3.3 V		385	620	
			V _{DD} = 5 V		390	660	
			V _{DD} = 10 V		400	800	
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$				1000	

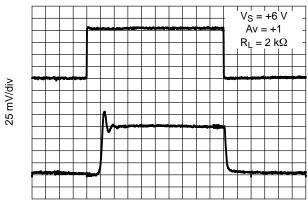
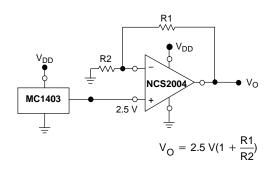

DC ELECTRICAL CHARACTERISTICS (V_{DD} = 2.5 V, 3.3 V, 5 V and \pm 5 V, T_A = 25°C, R_L ≥ 10 k Ω unless otherwise noted)


AC ELECTRICAL CHARACTERISTICS (V_{DD} = 2.5 V, 5 V, & \pm 5 V, T_A = 25°C, and R_L \geq 10 k Ω unless otherwise noted)


Parameter Symbol		Conditions			Тур	Max	Unit
Unity Gain Bandwidth	UGBW	$R_L = 2 k\Omega$, $C_L = 10 pF$	V _{DD} = 2.5 V		3.2		MHz
Danuwium			V _{DD} = 5 V to 10 V		3.5		
Slew Rate at Unity	SR	$V_{O(pp)} = V_{DD}/2, R_L = 10 \text{ k}\Omega, C_L = 50 \text{ pF}$	V _{DD} = 2.5 V	1.35	2.0		V/μS
Gain		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		1			
		$V_{O(pp)} = V_{DD}/2, R_L = 10 \text{ k}\Omega, C_L = 50 \text{ pF}$	$V_{DD} = 5 V$ $V_{DD} = \pm 5 V$	1.45	2.3		
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$		1.2			
		$V_{O(pp)} = V_{DD}/2, R_L = 10 \text{ k}\Omega, C_L = 50 \text{ pF}$		1.8	2.6		
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$		1.3			
Phase Margin	θ_{m}	$R_L = 2 k\Omega, C_L = 10 pF$			45		0
Gain Margin		$R_L = 2 k\Omega$, $C_L = 10 pF$			14		dB
Settling Time to 0.1%	t _S	V-step(pp) = 1 V, AV = -1, R _L = 2 k Ω , C _L = 10 pF	V _{DD} = 2.5 V		2.9		μS
			$V_{DD} = 5 V, \pm 5 V$		2.0		
Total Harmonic	THD+N	V $V_{DD} = 2.5 \text{ V}, V_{O(pp)} = V_{DD}/2, R_L = 2 \text{ k}\Omega,$ f = 10 kHz	AV = 1		0.004		%
Distortion plus Noise			AV = 10		0.04		
			AV = 100		0.3		
	$V_{DD} = 5 V, \pm$	$V_{DD} = 5 V, \pm 5 V, V_{O(pp)} = V_{DD}/2,$	AV = 1		0.004		
		$R_L = 2 k\Omega$, f = 10 kHz ^(rr)	AV = 10		0.04		
			AV = 100		0.03		
Input–Referred	e _n	f = 1 kHz	-		30		nV/√Hz
Voltage Noise		f = 10 kHz			20		1
Input–Referred Current Noise	i _n	f = 1 kHz			0.6		fA/√Hz





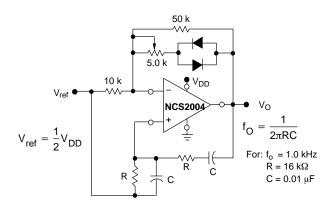
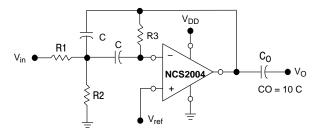


Figure 30. 6 V Non–Inverting Small Signal Pulse Response


APPLICATIONS

R2 Hysteresis VOH R1 Vo Vref 4 NCS2004 Vo Vin (VOL VinL VinH V_{ref} $V_{in}L = \frac{R1}{R1 + R2} \quad (V_{OL} - V_{ref}) + V_{ref}$
$$\begin{split} V_{in}H &= \frac{R1}{R1+R2} \quad (V_{OH}-V_{ref})+V_{ref} \\ H &= \frac{R1}{R1+R2} \quad (V_{OH}-V_{OL}) \end{split}$$

Figure 33. Comparator with Hysteresis

Given: f_0 = center frequency A(f_0) = gain at center frequency

Choose value f_o, C_Q
Then: R3 =
$$\frac{Q}{\pi f_0 C}$$

R1 = $\frac{R3}{2 A(f_0)}$
R2 = $\frac{R1 R3}{4Q^2 R1 - R3}$

For less than 10% error from operational amplifier, ((Q_O f_O)/BW) < 0.1 where f_o and BW are expressed in Hz. If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

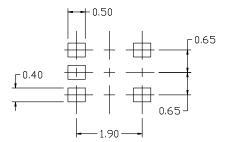
Figure 34. Multiple Feedback Bandpass Filter

onsemi

0

DATE 11 APR 2023

SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE M


NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. 419A-01 DBSDLETE. NEW STANDARD 419A-02
- 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.1016MM PER SIDE.

- → 5X b (♦ 0.2@ B@)	

e

E1

RECOMMENDED MOUNTING FOOTPRINT

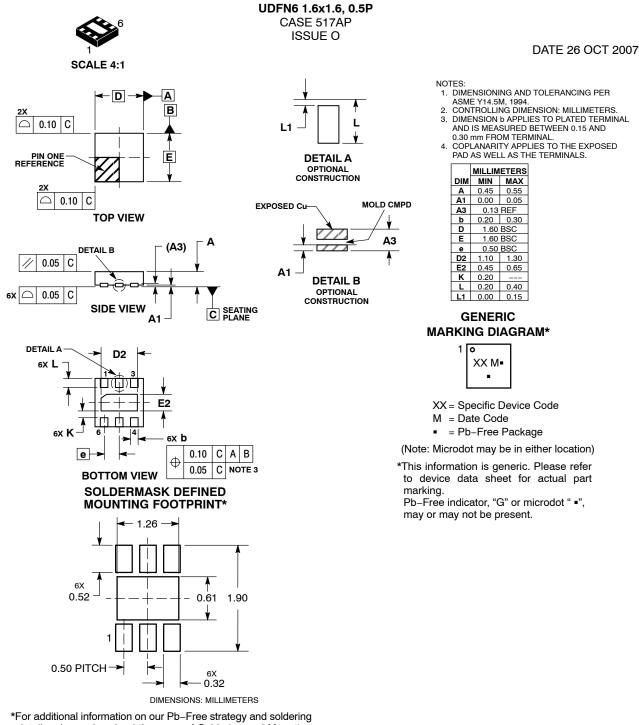
 For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

DIM	MILLIMETERS					
UIN	MIN.	NDM.	MAX,			
А	0.80	0.95	1.10			
A1			0.10			
AЗ	0.20 REF					
b	0.10	0.20	0.30			
C	0.10		0.25			
D	1.80	2.00	2.20			
E	2.00	2.10	2.20			
E1	1.15	1.25	1.35			
e		0.65 BSC				
L	0.10	0.15	0.30			

GENERIC MARKING

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

XXX = Specific Device Code


M = Date Code = Pb-Free Package

(Note: Microdot may be in either location)

DESCRIPTION:	SC-88A (SC-70-	5/SOT-353)			PAGE 1 OF 1
DOCUMENT NUMBER:	98ASB42984B			t when accessed directly from /hen stamped "CONTROLLED	
4. COLLECTOR 5. COLLECTOR STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 5. COLLECTOR 2/BASE	4. COLLECTOR 5. CATHODE STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR	4. CATHODE 2 5. CATHODE 1 STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER	4. GATE 1 5. GATE 2 STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE	4. CATHODE 3 5. CATHODE 4 Note: Please refer to style callout. If style t out in the datasheet p datasheet pinout or p	ype is not called refer to the device
STYLE 1: PIN 1. BASE 2. EMITTER 3. BASE	STYLE 2: PIN 1. ANODE 2. EMITTER 3. BASE	STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2	STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1	STYLE 5: PIN 1. CATHODE 2. COMMON ANOE 3. CATHODE 2	DE

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or the rights of others.

<u>onsemi.</u>

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON25711D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	6 PIN UDFN, 1.6X1.6, 0.5P	, 1.6X1.6, 0.5P PAGE 1 C				

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>