

Low Voltage, Dual DPDT and Quad SPDT Analog Switches

DESCRIPTION

The DG2018 and DG2019 are low voltage, single supply analog switches. The DG2018 is a dual double-pole/double-throw (DPDT) with two control inputs that each controls a pair of single-pole/double-throw (SPDT). The DG2019 uses one control pin to operate four independent SPDT switches.

When operated on a + 3 V supply, the DG2018's control pins are compatible with 1.8 V digital logic. The DG2019 has an available feature of a V_L pin that allows a 1.0 V threshold for the control pin when V_L is powered with 1.5 V.

Built on Vishay Siliconix's low voltage submicron CMOS process, the DG2018 and DG2019 are ideal for high performance switching of analog signals; providing low onresistance (6 Ω at + 2.7 V), fast speed (Ton, Toff at 42 ns and 16 ns), and a bandwidth that exceeds 180 MHz.

The DG2018 and DG2019 were designed to offer solutions that extend beyond audio/video functions, to providing the performance required for today's demanding mixed-signal switching in portable applications.

An epitaxial layer prevents latch-up. Brake-before-make is guaranteed for all SPDT's. All switches conduct equally well in both directions when on, and blocks up to the power supply level when off.

DG2018DN

FEATURES

- Low voltage operation (1.8 V to 5.5 V)
- · Low on resistance
 - R_{DS(on)}: 6 Ω at 2.7 V
- · Low voltage logic compatible
 - DG2019: V_{INH} = 1 V
- · High bandwidth: 180 MHz
- QFN-16 package

BENEFITS

- · Ideal for both analog and digital signal switching
- Reduced power consumption
- High accuracy
- · Reduced PCB space
- · Fast switching
- Low leakage

APPLICATIONS

- · Cellular phones
- · Audio and video signal routing
- PCMCIA cards
- · Battery operated systems
- · Portable instrumentation

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

QFN-16 (3 X 3) V+ COM1 NO1 NC4 15 14 13 16 NC₁ COM4 NO4 IN1, IN2 NO₂ IN3, IN4 COM₂ NC3 NO3 COM3 GND Top View

TRUTH TABLE										
IN1, IN2										
Logic	NC1 and NC2	NO1 and NO2								
0	ON	OFF								
1	OFF	ON								
IN3, IN4										
Logic	NC3 and NC4	NO3 and NO4								
0	ON	OFF								
1	OFF	ON								

ORDERING INFORMATION								
Temp. Range Package Part Number								
- 40 °C to 85 °C	QFN-16 (3 x 3 mm)	DG2018DN						

Vishay Siliconix

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Top View

TRUTH TABLE										
Logic	NC1, 2, 3 and 4	NO1, 2, 3 and 4								
0	ON	OFF								
1	OFF	ON								

ORDERING INFORMATION								
Temp. Range Package Part Number								
- 40 °C to 85 °C	QFN-16 (3 x 3 mm)	DG2019DN						

ABSOLUTE MAXIMUM RATINGS										
Parameter	Limit	Unit								
Reference V+ to GND		- 0.3 to + 6	V							
IN, COM, NC, NO		- 0.3 to (V+ + 0.3)	v							
Continuous Current (Any terminal)	± 50	mΛ								
Peak Current (Pulsed at 1 ms, 10 % Duty Cycle)		± 100	- mA							
Storage Temperature (D Suffix)		- 65 to 150	°C							
Power Dissipation (Packages) ^b	QFN-16 (3 x 3 mm) ^c	850	mW							

Notes:

- a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC board.
- c. Derate 4.0 mW/°C above 70 °C.

SPECIFICATIONS V+	- U	Test Conditions				Limits			
	Otherwise Unless Specified					- 40 °C to 85 °C			
		$V+ = 3 V, \pm 10 \%,$							
		(DG2018 Only) $V_{IN} = 0.5 \text{ or } 1.6 \text{ m}$			_				
Parameter	Symbol	(DG2019 Only) V _L = 1.5 V, V _{IN} = 0.4	4 or 1.0 V°	Temp. ^a	Min.b	Typ. ^c	Max. ^b	Unit	
Analog Switch	\/ \/			ı		Π	Π		
Analog Signal Range ^d	V_{NO}, V_{NC}, V_{COM}			Full	0		V+	V	
On-Resistance	R _{ON}	$V+ = 2.7 \text{ V}, V_{COM} = 0.2 \text{ V}/1.9$ $I_{NO}, I_{NC} = 10 \text{ mA}$	5 V	Room Full		6	12 15		
R _{ON} Flatness	R _{ON} Flatness	V+ = 2.7 V	Room		0.5	2	Ω		
R _{ON} Match Between Channels	ΔR _{ON}	$V_{COM} = 0$ to V+, I_{NO} , $I_{NC} = 10$	Room		0.6	3			
Switch Off Leakage Current	$I_{NO(off)}$ $I_{NC(off)}$	V+ = 3.3 V, V _{NO} , V _{NC} = 0.3 V/3 V		Room Full	- 1 - 10	0.3	1 10		
omon on Loanago ourion	I _{COM(off)}	V _{COM} = 3 V/0.3 V	V _{COM} = 3 V/0.3 V		- 1 - 10	0.3	1 10	nA	
Channel-On Leakage Current	I _{COM(on)}	$V+ = 3.3 V, V_{NO}, V_{NC} = V_{COM} = 0$	Room Full	- 1 10	0.3	1 10			
Digital Control			i .	1		•	•		
Input High Voltage	V _{INH}		DG2018	Full	1.4				
1 0 0		V _L = 1.5 V	DG2019	Full	1.0			V	
Input Low Voltage	V_{INL}	V _L = 1.5 V	DG2018 DG2019	Full Full			0.5		
Input Capacitance	C _{in}	f = 1 MHz	DG2019	Full		9	0.4	pF	
Input Current	I _{INL} or I _{INH}	$V_{IN} = 0 \text{ or } V+$		Full	- 1	9	1	μΑ	
Dynamic Characteristics	·INL S. ·INH	7 IIV		ı uıı	•		<u>'</u>	μπ	
-				Room		42	55		
Turn-On Time	t _{ON}	V_{NO} or $V_{NC} = 2.0 \text{ V}$, $R_1 = 300 \Omega$, C	ı = 35 pF	Full			65		
Turn-Off Time	t _{OFF}			Room Full		16	25 35	ns	
Break-Before-Make Time	t _d	V_{NO} or V_{NC} = 2.0 V, R_L = 50 Ω , C_L	_ = 35 pF	Full	1				
Charge Injection ^d	Q_{INJ}	$C_L = 1 \text{ nF, } V_{GEN} = 0 \text{ V, } R_{GEN} =$	= 0 Ω	Room		- 1.46		рС	
Off-Isolation ^d	OIRR			Room		- 67		dB	
Crosstalk ^d	X _{TALK}	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 M$	1Hz	Room		- 72		ub	
Bandwidth ^d	BW			Room		180		MHz	
N. N. 0" 0 't d	C _{NO(off)}			Room		9			
N _O , N _C Off Capacitance ^d	C _{NC(off)}			Room		9		pF	
Observation d	C _{NO(on)}	V _{IN} = 0 01 V+, 1 = 1 NIM2	Room		30				
Channel-On Capacitance ^d	C _{NC(on}			Room		30		<u></u>	
Power Supply									
Power Supply Current	l+	$V_{IN} = 0$ or $V+$		Full		0.01	1.0	μΑ	

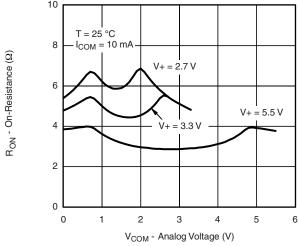
Notes:

- a. Room = 25 $^{\circ}$ C, Full = as determined by the operating suffix.
- b. Typical values are for design aid only, not guaranteed nor subject to production testing.
 c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- d. Guarantee by design, nor subjected to production test.
- e. V_{IN} = input voltage to perform proper function.

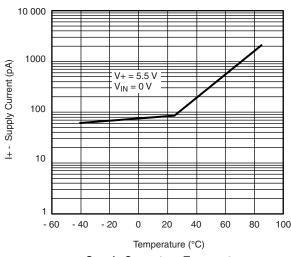
DG2018, DG2019

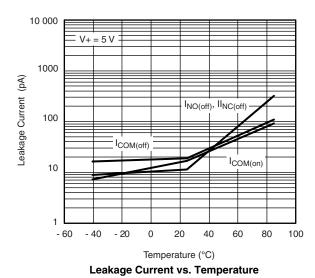
Vishay Siliconix

SPECIFICATIONS V+ =	= 5 V							
		Test Conditions Otherwise Unless Specifion V+ = 5 V, ± 10 %,		- 40	Limits 0 °C to 85	5°C		
		(DG2018 Only) V _{IN} = 0.8 or 1	.8 V ^e					
Parameter	Symbol	(DG2019 Only) V _L = 1.5 V, V _{IN} = 0	.4 or 1.0 V ^e	Temp.a	Min.b	Typ. ^c	Max.b	Unit
Analog Switch	ľ					I	l	ı
Analog Signal Range ^d	V_{NO}, V_{NC}, V_{COM}		Full	0		V+	V	
On-Resistance	R _{ON}	$V+ = 4.5 \text{ V}, V_{COM} = 3 \text{ V}, I_{NO}, I_{NC}$	= 10 mA	Room Full		4	8 10	
R _{ON} Flatness	R _{ON} Flatness	$V_{+} = 4.5 V$ $V_{COM} = 0 \text{ to } V_{+}, I_{NO}, I_{NC} = 10$	Room		0.6	1.2	Ω	
R _{ON} Match Between Channels	ΔR_{ON}	VCOM = 0 to V+, INO, INC = 10	UIIIA	Room		0.6	1.2	
Switch Off Leakage Current ^f	I _{NO(off)} I _{NC(off)}	V+ = 5.5 V	V+ = 5.5 V		- 1 - 10	0.03	1 10	
Switch On Leakage Current	I _{COM(off)}	V_{NO} , $V_{NC} = 1 \text{ V/4.5 V}$, $V_{COM} = 4$.5 V/1 V	Room Full	- 1 - 10	0.03	1 10	nA
Channel-On Leakage Current ^f	I _{COM(on)}	$V+ = 5.5 \text{ V}, V_{NO}, V_{NC} = V_{COM} = 10$	1 V/4.5 V	Room Full	- 1 - 10	0.03	1 10	
Digital Control		,		1		•	•	ı
Input High Voltage	V _{INH}	V _I = 1.5 V	DG2018	Full	1.8			
		V _L = 1.5 V	DG2019	Full Full	1.0		0.0	٧
Input Low Voltage	V_{INL}	V _L = 1.5 V	DG2018 DG2019	Full			0.8	
Input Capacitance	C _{in}	<u> </u>	2 0.20.0	Full		9	•••	pF
Input Current	I _{INL} or I _{INH}	V _{IN} = 0 or V+		Full	1		1	μΑ
Dynamic Characteristics		l		I		l		
Turn-On Time	t _{ON}	V_{NO} or $V_{NC} = 3$ V, $R_L = 300 \Omega$, C	= 35 nF	Room Full		44	48 52	
Turn-Off Time	t _{OFF}			Room Full		19	33 35	ns
Break-Before-Make Time	t _d	V_{NO} or $V_{NC} = 3 \text{ V}$, $R_L = 50 \Omega$, C_L		Full	1			
Charge Injection ^d	Q _{INJ}	$C_L = 1 \text{ nF, } V_{GEN} = 0 \text{ V, } R_{GEN}$	= 0 Ω	Room		- 2.46		рC
Off-Isolation ^d	OIRR			Room		- 67		dB
Crosstalk ^d	X _{TALK}	$R_L = 50 \Omega, C_L = 5 pF, f = 1 N$	ИHz	Room		- 72		GD.
Bandwidth ^d	BW			Room		180		MHz
Source-Off Capacitanced	C _{NO(off)}			Room		7.5		
Source On Supacitation	C _{NC(off)}	V _{IN} = 0 or V+, f = 1 MHz		Room		7.5		pF
Channel-On Capacitance ^d	C _{NO(on)}	IIV ,	Room		30			
•	C _{NC(on}		Room		30			
Power Supply		T				ı		
Power Supply Range	V+	\\ \ \O \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\		F	1.8	0.04	5.5	V
Power Supply Current	l+	$V_{IN} = 0 \text{ or } V+$		Full		0.01	1.0	μΑ

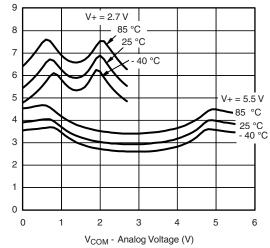

Notes:

- a. Room = 25 $^{\circ}$ C, Full = as determined by the operating suffix.
- b. Typical values are for design aid only, not guaranteed nor subject to production testing.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- d. Guarantee by design, nor subjected to production test.
- e. V_{IN} = input voltage to perform proper function.
- f. Not production tested.

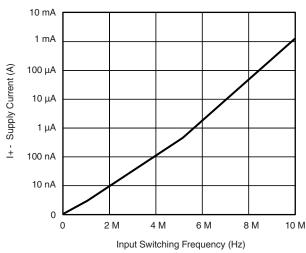

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

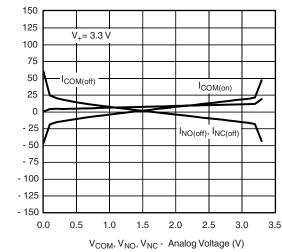
 R_{ON} vs. V_{COM} and Supply Voltage



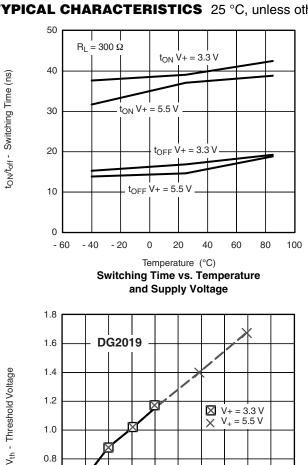
Supply Current vs. Temperature

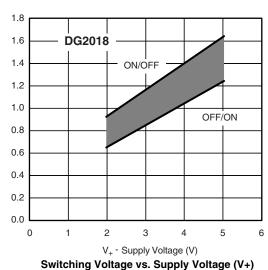


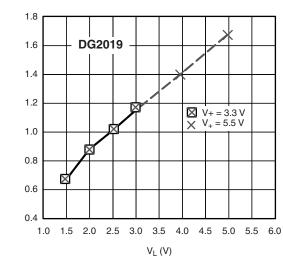
 R_ON - On-Resistance (Ω)

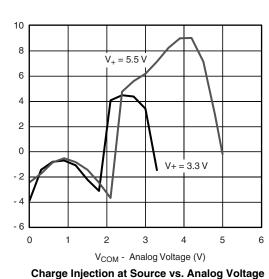

Leakage Current (pA)

R_{ON} vs. Analog Voltage and Temperature

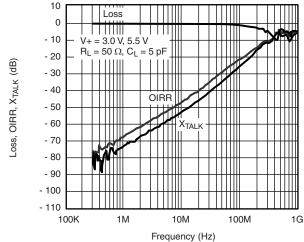

Supply Current vs. Input Switching Frequency



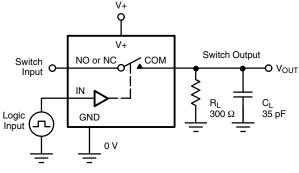

Leakage vs. Analog Voltage

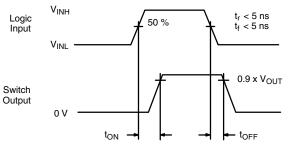

Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



V_{th} - Threshold Voltage


Q - Charge Injection (pC)



Insertion Loss, Off Isolation and Crosstalk vs. Frequency

TEST CIRCUITS

C_L (includes fixture and stray capacitance)

$$V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$$

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

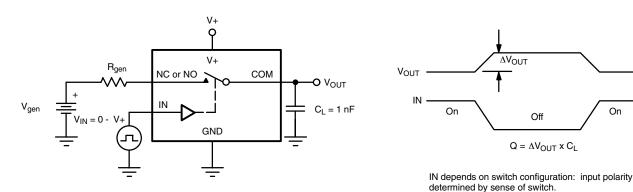


Figure 2. Charge Injection

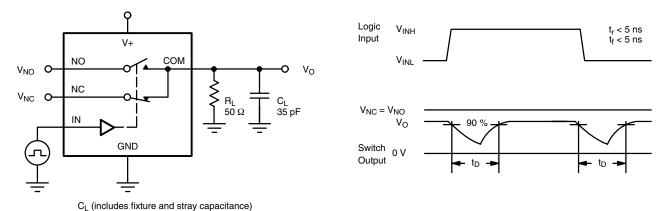


Figure 3. Break-Before-Make Interval

Vishay Siliconix

TEST CIRCUITS

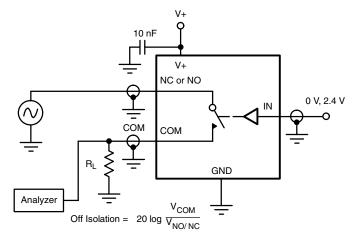
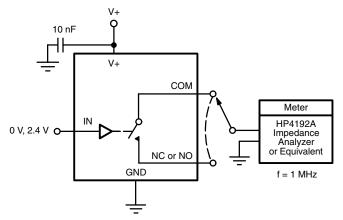
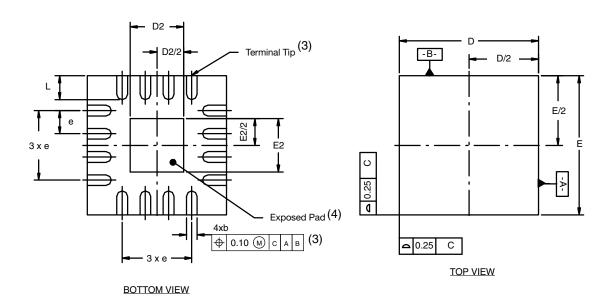
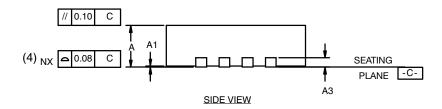


Figure 4. Off-Isolation


Figure 5. Channel Off/On Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?72342.

QFN-16 Lead (3 x 3)

Notes

- (1) All dimensions are in millimeters.
- (2) N is the total number of terminals.
- (3) Dimension b applies to metallized terminal and is measured between 0.25 and 0.30 mm from terminal tip.
- (4) Coplanarity applies to the exposed heat sink slug as well as the terminal.
- (5) The pin #1 identifier may be either a mold or marked feature, it must be located within the zone indicated.

VARIATION 1						ON 1 VARIATION 2					
MILLIMETERS			INCHES		М	ILLIMETE	RS	INCHES			
MIN.	NOM	MAX.	MIN.	NOM	MAX.	MIN.	NOM	MAX.	MIN.	NOM	MAX.
0.80	0.90	1.00	0.031	0.035	0.039	0.80	0.90	1.00	0.031	0.035	0.039
0.18	0.23	0.30	0.007	0.009	0.012	0.18	0.25	0.30	0.007	0.010	0.012
2.90	3.00	3.10	0.114	0.118	0.122	2.90	3.00	3.10	0.114	0.118	0.122
1.00	1.15	1.25	0.039	0.045	0.049	1.50	1.70	1.80	0.059	0.067	0.071
2.90	3.00	3.10	0.114	0.118	0.122	2.90	3.00	3.10	0.114	0.118	0.122
1.00	1.15	1.25	0.039	0.045	0.049	1.50	1.70	1.80	0.059	0.067	0.071
	0.50 BSC		0.020 BSC			0.50 BSC			0.020 BSC	;	
0.30	0.40	0.50	0.012	0.016	0.020	0.30	0.40	0.50	0.012	0.016	0.020
	MIN. 0.80 0.18 2.90 1.00 2.90 1.00	MIN. NOM 0.80 0.90 0.18 0.23 2.90 3.00 1.00 1.15 2.90 3.00 1.00 1.15 0.50 BSC	MILLIMETERS MIN. NOM MAX. 0.80 0.90 1.00 0.18 0.23 0.30 2.90 3.00 3.10 1.00 1.15 1.25 2.90 3.00 3.10 1.00 1.15 1.25 0.50 BSC 0.50 BSC	MILLIMETERS MIN. NOM MAX. MIN. 0.80 0.90 1.00 0.031 0.18 0.23 0.30 0.007 2.90 3.00 3.10 0.114 1.00 1.15 1.25 0.039 2.90 3.00 3.10 0.114 1.00 1.15 1.25 0.039 0.50 BSC 0.50 BSC	MILLIMETERS INCHES MIN. NOM MAX. MIN. NOM 0.80 0.90 1.00 0.031 0.035 0.18 0.23 0.30 0.007 0.009 2.90 3.00 3.10 0.114 0.118 1.00 1.15 1.25 0.039 0.045 2.90 3.00 3.10 0.114 0.118 1.00 1.15 1.25 0.039 0.045 0.50 BSC 0.020 BSC 0.020 BSC	MILLIMETERS INCHES MIN. NOM MAX. MIN. NOM MAX. 0.80 0.90 1.00 0.031 0.035 0.039 0.18 0.23 0.30 0.007 0.009 0.012 2.90 3.00 3.10 0.114 0.118 0.122 1.00 1.15 1.25 0.039 0.045 0.049 2.90 3.00 3.10 0.114 0.118 0.122 1.00 1.15 1.25 0.039 0.045 0.049 0.50 BSC 0.020 BSC	MILLIMETERS INCHES MIN. MIN. NOM MAX. MIN. NOM MAX. MIN. 0.80 0.90 1.00 0.031 0.035 0.039 0.80 0.18 0.23 0.30 0.007 0.009 0.012 0.18 2.90 3.00 3.10 0.114 0.118 0.122 2.90 1.00 1.15 1.25 0.039 0.045 0.049 1.50 2.90 3.00 3.10 0.114 0.118 0.122 2.90 1.00 1.15 1.25 0.039 0.045 0.049 1.50 0.50 BSC 0.020 BSC 0.020 BSC	MILLIMETERS INCHES MILLIMETER MIN. NOM MAX. MIN. NOM MAX. MIN. NOM 0.80 0.90 1.00 0.031 0.035 0.039 0.80 0.90 0.18 0.23 0.30 0.007 0.009 0.012 0.18 0.25 2.90 3.00 3.10 0.114 0.118 0.122 2.90 3.00 1.00 1.15 1.25 0.039 0.045 0.049 1.50 1.70 2.90 3.00 3.10 0.114 0.118 0.122 2.90 3.00 1.00 1.15 1.25 0.039 0.045 0.049 1.50 1.70 0.50 BSC 0.020 BSC 0.020 BSC 0.50 BSC 0.50 BSC	MILLIMETERS INCHES MILLIMETERS MIN. NOM MAX. MIN. NOM MAX. MIN. NOM MAX. 0.80 0.90 1.00 0.031 0.035 0.039 0.80 0.90 1.00 0.18 0.23 0.30 0.007 0.009 0.012 0.18 0.25 0.30 2.90 3.00 3.10 0.114 0.118 0.122 2.90 3.00 3.10 1.00 1.15 1.25 0.039 0.045 0.049 1.50 1.70 1.80 2.90 3.00 3.10 0.114 0.118 0.122 2.90 3.00 3.10 1.00 1.15 1.25 0.039 0.045 0.049 1.50 1.70 1.80 0.50 BSC 0.020 BSC 0.050 BSC 0.50 BSC	MILLIMETERS INCHES MILLIMETERS MIN. NOM MAX. MIN. 0.031 0.031 0.031 0.039 0.0029 0.012 0.18 0.25 0.30 0.007 2.90 3.00 3.10 0.114 0.118 0.122 2.90 3.00 3.10 0.114 1.00 1.15 1.25 0.039 0.045 0.049 1.50 1.70	MILLIMETERS INCHES MILLIMETERS INCHES MIN. NOM MAX. MIN. NO. 0.031 0.031

ECN: T16-0233-Rev. D, 09-May-16

DWG: 5899

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED