Thank you for your interest in **onsemi** products.

Your technical document begins on the following pages.

Your Feedback is Important to Us!

Please take a moment to participate in our short survey.

At **onsemi**, we are dedicated to delivering technical content that best meets your needs.

Help Us Improve - Take the Survey

This survey is intended to collect your feedback, capture any issues you may encounter, and to provide improvements you would like to suggest.

We look forward to your feedback.

To learn more about **onsemi**, please visit our website at **www.onsemi.com**

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Analog Multiplexers/Demultiplexers

MC14051B, MC14052B, MC14053B

The MC14051B, MC14052B, and MC14053B analog multiplexers are digitally-controlled analog switches. The MC14051B effectively implements an SP8T solid state switch, the MC14052B a DP4T, and the MC14053B a Triple SPDT. All three devices feature low ON impedance and very low OFF leakage current. Control of analog signals up to the complete supply voltage range can be achieved.

Features

- Triple Diode Protection on Control Inputs
- Switch Function is Break Before Make
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Analog Voltage Range $(V_{DD} V_{EE}) = 3.0$ to 18 V Note: V_{EE} must be $\leq V_{SS}$
- Linearized Transfer Characteristics
- Low-noise 12 nV/ $\sqrt{\text{Cycle}}$, f \geq 1.0 kHz Typical
- Pin-for-Pin Replacement for CD4051, CD4052, and CD4053
- For 4PDT Switch, See MC14551B
- For Lower R_{ON}, Use the HC4051, HC4052, or HC4053 High-Speed **CMOS** Devices
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

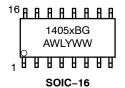
MAXIMUM RATINGS (Voltages Referenced to V_{SS})

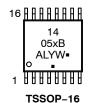
Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range (Referenced to V_{EE} , $V_{SS} \ge V_{EE}$)	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient) (Referenced to V _{SS} for Control Inputs and V _{EE} for Switch I/O)	–0.5 to V _{DD} + 0.5	>
I _{in}	Input Current (DC or Transient) per Control Pin	+10	mA
I _{SW}	Switch Through Current	±25	mA
P _D	Power Dissipation per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS}, V_{EE} or V_{DD}). Unused outputs must be left open.


1

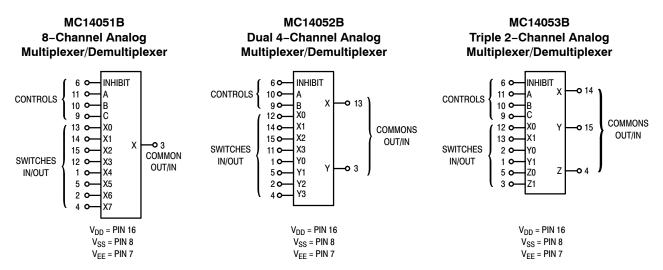


TSSOP-16 **DT SUFFIX** CASE 948F

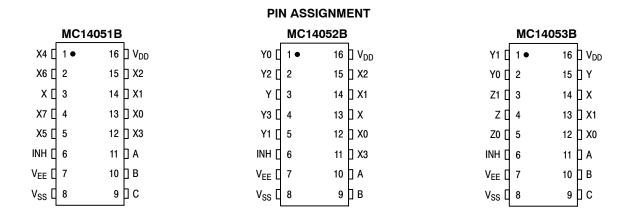
MARKING DIAGRAMS

= 1, 2, or 3

х


= Assembly Location

WI I = Wafer Lot = Work Week = Pb-Free Package


(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

Note: Control Inputs referenced to V_{SS} , Analog Inputs and Outputs reference to V_{EE} . V_{EE} must be $\leq V_{SS}$.

ELECTRICAL CHARACTERISTICS

				-5	5°C		25°C		12	5°C	
							Тур				
Characteristic	Symbol	V_{DD}	Test Conditions	Min	Max	Min	(Note 2)	Max	Min	Max	Unit
SUPPLY REQUIREMENTS	<u> </u>	Referer		1	1	1	Т	ı	1	1	
Power Supply Voltage Range	V _{DD}	-	$V_{DD} - 3.0 \ge V_{SS} \ge V_{EE}$	3.0	18	3.0	_	18	3.0	18	V
Quiescent Current Per Package	I _{DD}	5.0 10 15	$\label{eq:control_loss} \begin{split} & \text{Control Inputs:} \\ & V_{in} = V_{SS} \text{ or } V_{DD}, \\ & \text{Switch I/O: } V_{EE} \leq V_{I/O} \leq \\ & V_{DD}, \text{ and } \Delta V_{switch} \leq \\ & 500 \text{ mV (Note 3)} \end{split}$	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μΑ
Total Supply Current (Dynamic Plus Quiescent, Per Package	I _{D(AV)}	5.0 10 15	$T_A = 25^{\circ}C$ only (The channel component, $(V_{in} - V_{out})/R_{on}$, is not included.)		Typical	(0.07 μA/kHz 0.20 μA/kHz 0.36 μA/kHz) f + I _{DD})		μА
CONTROL INPUTS — INHII	BIT, A, B,	C (Volta	ages Referenced to V _{SS})								
Low-Level Input Voltage	V _{IL}	5.0 10 15	R _{on} = per spec, I _{off} = per spec	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	V
High-Level Input Voltage	V _{IH}	5.0 10 15	R _{on} = per spec, I _{off} = per spec	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	- - -	V
Input Leakage Current	l _{in}	15	$V_{in} = 0 \text{ or } V_{DD}$	_	±0.1	_	±0.00001	±0.1	_	1.0	μΑ
Input Capacitance	C _{in}	-		_	_	_	5.0	7.5	_	-	pF
SWITCHES IN/OUT AND CO	OMMONS	OUT/IN	N — X, Y, Z (Voltages Refere	nced to	V _{EE})						
Recommended Peak-to-Peak Voltage Into or Out of the Switch	V _{I/O}	I	Channel On or Off	0	V _{DD}	0	-	V _{DD}	0	V _{DD}	V _{PP}
Recommended Static or Dynamic Voltage Across the Switch (Note 3) (Figure 5)	ΔV_{switch}	I	Channel On	0	600	0	-	600	0	300	mV
Output Offset Voltage	V _{OO}	1	V _{in} = 0 V, No Load	-	-	-	10	-	-	-	μV
ON Resistance	R _{on}	5.0 10 15	$\begin{split} \Delta V_{\text{switch}} &\leq 500 \text{ mV} \\ \text{(Note 3) } V_{\text{in}} &= V_{\text{IL}} \text{ or } V_{\text{IH}} \\ \text{(Control), and } V_{\text{in}} &= \\ 0 \text{ to } V_{DD} \text{ (Switch)} \end{split}$	- - -	800 400 220	- - -	250 120 80	1050 500 280	- - -	1200 520 300	Ω
AON Resistance Between Any Two Channels in the Same Package	ΔR _{on}	5.0 10 15		- - -	70 50 45	- - -	25 10 10	70 50 45	- - -	135 95 65	Ω
Off-Channel Leakage Current (Figure 10)	I _{off}	15	V _{in} = V _{IL} or V _{IH} (Control) Channel to Channel or Any One Channel	_	±100	_	±0.05	±100	-	±1000	nA
Capacitance, Switch I/O	C _{I/O}	1	Inhibit = V _{DD}	_	_	_	10	_	_	_	pF
Capacitance, Common O/I	C _{O/I}	I	Inhibit = V _{DD} (MC14051B) (MC14052B) (MC14053B)		- - -	- - -	60 32 17		1 1 1	- - -	pF
Capacitance, Feedthrough (Channel Off)	C _{I/O}	1 1	Pins Not Adjacent Pins Adjacent	-	- -	-	0.15 0.47	-	- -	-	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{2.} Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.

For voltage drops across the switch (ΔV_{switch}) > 600 mV (> 300 mV at high temperature), excessive V_{DD} current may be drawn, i.e. the current out of the switch may contain both V_{DD} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

 $\textbf{ELECTRICAL CHARACTERISTICS} \text{ (Note 4) } (C_L = 50 \text{ pF, } T_A = 25^{\circ}\text{C) } \text{ ($V_{EE} \leq V_{SS}$ unless otherwise indicated)}$

Characteristic	Symbol	V _{DD} – V _{EE} Vdc	Typ (Note 5) All Types	Max	Unit
Propagation Delay Times (Figure 6) Switch Input to Switch Output ($R_L = 1 \text{ k}\Omega$) MC14051	t _{PLH} , t _{PHL}				ns
t_{PLH} , t_{PHL} = (0.17 ns/pF) C_L + 26.5 ns t_{PLH} , t_{PHL} = (0.08 ns/pF) C_L + 11 ns t_{PLH} , t_{PHL} = (0.06 ns/pF) C_L + 9.0 ns		5.0 10 15	35 15 12	90 40 30	
кр _{LH} , кр _{HL} = (0.06 нs/рг) С _L + 9.0 нs MC14052		- 15	12	30	ns
$t_{PLH}, t_{PHL} = (0.17 \text{ ns/pF}) \text{ C}_L + 21.5 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.08 \text{ ns/pF}) \text{ C}_L + 8.0 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.06 \text{ ns/pF}) \text{ C}_L + 7.0 \text{ ns}$		5.0 10 15	30 12 10	75 30 25	
$\begin{aligned} &\text{MC14053} \\ &t_{\text{PLH}},t_{\text{PHL}} = (0.17\;\text{ns/pF})\;C_{\text{L}} + 16.5\;\text{ns} \\ &t_{\text{PLH}},t_{\text{PHL}} = (0.08\;\text{ns/pF})\;C_{\text{L}} + 4.0\;\text{ns} \\ &t_{\text{PLH}},t_{\text{PHL}} = (0.06\;\text{ns/pF})\;C_{\text{L}} + 3.0\;\text{ns} \end{aligned}$		5.0 10 15	25 8.0 6.0	65 20 15	ns
Inhibit to Output ($R_L = 10 \text{ k}\Omega$, $V_{EE} = V_{SS}$) Output "1" or "0" to High Impedance, or High Impedance to "1" or "0" Level	t _{PHZ} , t _{PLZ} , t _{PZH} , t _{PZL}				ns
MC14051B		5.0 10 15	350 170 140	700 340 280	
MC14052B		5.0 10 15	300 155 125	600 310 250	ns
MC14053B		5.0 10 15	275 140 110	550 280 220	ns
Control Input to Output (R _L = 1 k Ω , V _{EE} = V _{SS}) MC14051B	t _{PLH} , t _{PHL}	5.0 10 15	360 160 120	720 320 240	ns
MC14052B		5.0 10 15	325 130 90	650 260 180	ns
MC14053B		5.0 10 15	300 120 80	600 240 160	ns
Second Harmonic Distortion $(R_L = 10K\Omega, f = 1 \text{ kHz}) V_{in} = 5 V_{PP}$	-	10	0.07	-	%
Bandwidth (Figure 7) $(R_L = 50 \Omega, V_{in} = 1/2 (V_{DD} - V_{EE}) p - p, C_L = 50pF$ $20 \text{ Log } (V_{out}/V_{in}) = -3 \text{ dB})$	BW	10	17	-	MHz
Off Channel Feedthrough Attenuation (Figure 7) $R_L = 1 \text{K}\Omega, \ V_{\text{in}} = 1/2 \ (V_{\text{DD}} - V_{\text{EE}}) \ p-p$ $f_{\text{in}} = 4.5 \ \text{MHz} - \text{MC}14051B$ $f_{\text{in}} = 30 \ \text{MHz} - \text{MC}14052B$ $f_{\text{in}} = 55 \ \text{MHz} - \text{MC}14053B$	-	10	-50	-	dB
Channel Separation (Figure 8) $(R_L=1~k\Omega,~V_{in}=1/2~(V_{DD}-V_{EE})~p-p,\\ f_{in}=3.0~MHz$	-	10	-50	-	dB
Crosstalk, Control Input to Common O/I (Figure 9) $(R_1 = 1 \text{ k}\Omega, R_L = 10 \text{ k}\Omega$ Control $t_{TLH} = t_{THL} = 20 \text{ ns, Inhibit} = V_{SS})$	-	10	75	-	mV

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. The formulas given are for the typical characteristics only at 25°C.

5. Data labelled "Typ" is not lo be used for design purposes but In intended as an indication of the IC's potential performance.

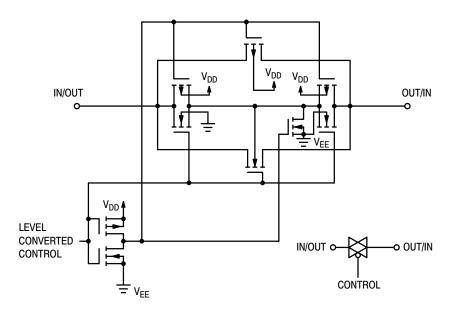


Figure 1. Switch Circuit Schematic

TRUTH TABLE

Cont	Control Inputs												
	Select			ON Switches									
Inhibit	C*	В	Α	MC14051B	MC14052B		MC14052B		MC14052B		MC	C1405	3B
0	0	0	0	X0	Y0	X0	Z0	Y0	X0				
0	0	0	1	X1	Y1	X1	Z0	Y0	X1				
0	0	1	0	X2	Y2	X2	Z0	Y1	X0				
0	0	1	1	Х3	Y3	ХЗ	Z0	Y1	X1				
0	1	0	0	X4			Z1	Y0	X0				
0	1	0	1	X5			Z1	Y0	X1				
0	1	1	0	X6			Z1	Y1	X0				
0	1	1	1	X7			Z1	Y1	X1				
1	х	Х	Х	None	No	ne		None					

*Not applicable for MC14052

x = Don't Care

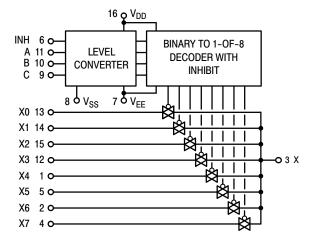


Figure 2. MC14051B Functional Diagram

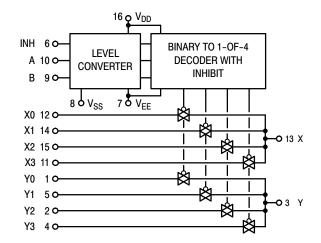


Figure 3. MC14052B Functional Diagram

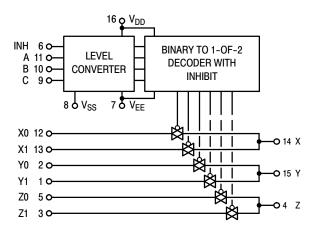


Figure 4. MC14053B Functional Diagram

TEST CIRCUITS

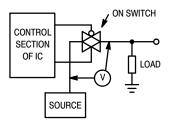


Figure 5. ΔV Across Switch

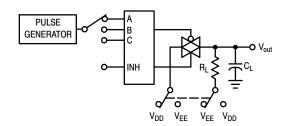


Figure 6. Propagation Delay Times, Control and Inhibit to Output

A, B, and C inputs used to turn ON or OFF the switch under test.

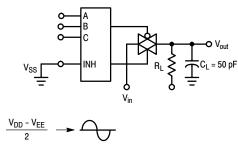


Figure 7. Bandwidth and Off-Channel Feedthrough Attenuation

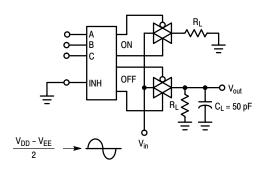


Figure 8. Channel Separation (Adjacent Channels Used For Setup)

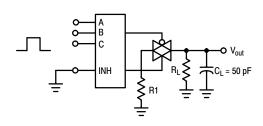


Figure 9. Crosstalk, Control Input to Common O/I

See also Figures 7 and 8 in the MC14016B data sheet.

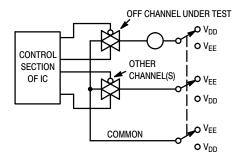


Figure 10. Off Channel Leakage

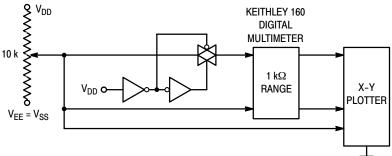
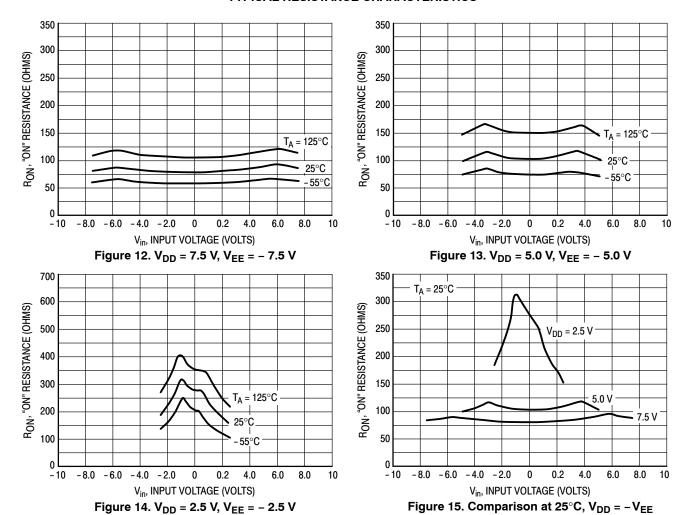



Figure 11. Channel Resistance (R_{ON}) Test Circuit

TYPICAL RESISTANCE CHARACTERISTICS

www.onsemi.com

APPLICATIONS INFORMATION

Figure A illustrates use of the on-chip level converter detailed in Figures 2, 3, and 4. The 0-to-5 V Digital Control signal is used to directly control a 9 V_{p-p} analog signal.

The digital control logic levels are determined by V_{DD} and V_{SS}. The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example, $V_{DD} = +5 \text{ V} = \text{logic}$ high at the control inputs; $V_{SS} = GND = 0 \text{ V} = \text{logic low}$.

The maximum analog signal level is determined by V_{DD} and V_{EE}. The V_{DD} voltage determines the maximum recommended peak above VSS. The VEE voltage determines the maximum swing below VSS. For the example, $V_{DD} - V_{SS} = 5 \text{ V}$ maximum swing above V_{SS} ; $V_{SS} - V_{EE} = 5 \text{ V}$ maximum swing below V_{SS} . The example shows a ±4.5 V signal which allows a 1/2 volt margin at each peak. If voltage transients above V_{DD} and/or below V_{EE} are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.

The absolute maximum potential difference between V_{DD} and V_{EE} is 18.0 V. Most parameters are specified up to 15 V which is the recommended maximum difference between V_{DD} and V_{EE} .

Balanced supplies are not required. However, V_{SS} must be greater than or equal to V_{EE} . For example, $V_{DD} = +10 \text{ V}$, V_{SS} = +5 V, and V_{EE} – 3 V is acceptable. See the Table

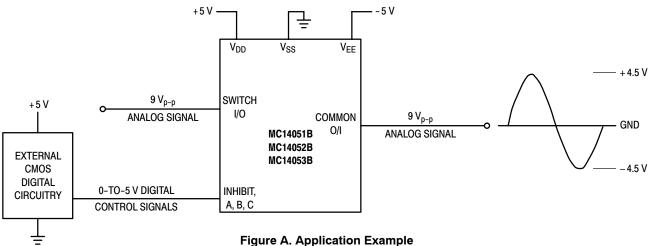


Figure A. Application Example

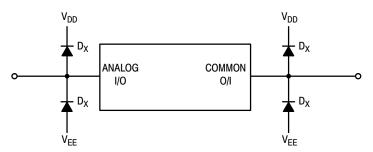


Figure B. External Germanium or Schottky Clipping Diodes

POSSIBLE SUPPLY CONNECTIONS

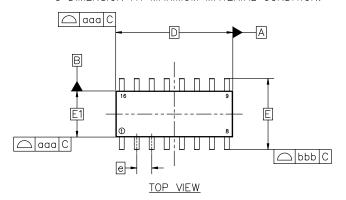
V _{DD} In Volts	V _{SS} In Volts	V _{EE} In Volts	Control Inputs Logic High/Logic Low In Volts	Maximum Analog Signal Range In Volts
+8	0	-8	+8/0	+8 to -8 = 16 V _{p-p}
+5	0	-12	+5/0	+5 to -12 = 17 V _{p-p}
+5	0	0	+5/0	+5 to 0 = 5 V _{p-p}
+5	0	- 5	+5/0	+5 to -5 = 10 V _{p-p}
+10	+5	- 5	+10/ +5	+10 to -5 = 15 V _{p-p}

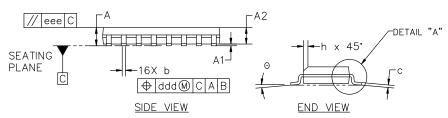
ORDERING INFORMATION

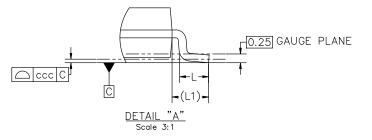
Device	Package	Shipping [†]
MC14051BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14051BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
MC14051BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
NLV14051BDR2G*	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC14051BDTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
NLV14051BDTR2G*	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
MC14052BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14052BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
MC14052BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
NLV14052BDR2G*	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC14052BDTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
NLV14052BDTR2G*	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
MC14053BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14053BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
MC14053BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
NLV14053BDR2G*	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC14053BDTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
NLV14053BDTR2G*	TSSOP-16 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP

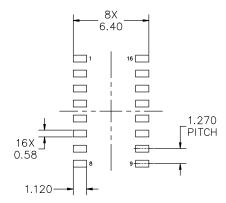
^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.




SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M


DATE 18 OCT 2024

NOTES:

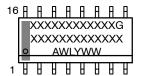

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
- 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE.
- 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.

MILLIMETERS						
DIM	MIN	NOM	MAX			
А	1.35	1.55	1.75			
A1	0.10	0.18	0.25			
A2	1.25	1.37	1.50			
b	0.35	0.42	0.49			
С	0.19	0.22	0.25			
D		9.90 BSC				
E	6.00 BSC					
E1	3.90 BSC					
е		1.27 BSC				
h	0.25		0.50			
L	0.40	0.83	1.25			
L1		1.05 REF				
Θ	0.		7.			
TOLERAN	CE OF FC	RM AND	POSITION			
aaa		0.10				
bbb	0.20					
ccc	0.10					
ddd		0.25	·			
eee		0.10				

RECOMMENDED MOUNTING FOOTPRINT

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE onsemi SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	.27P	PAGE 1 OF 2		


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.37 1.27P CASE 751B

ISSUE M

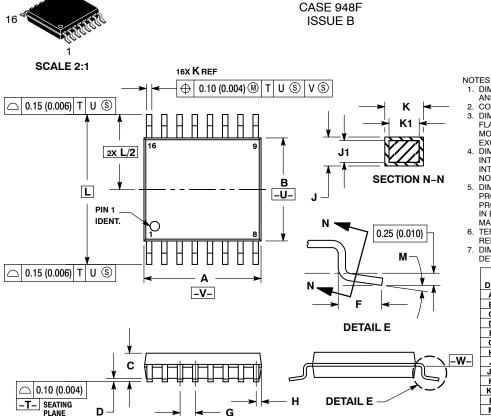
DATE 18 OCT 2024

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code A = Assembly Location

WL = Wafer Lot
 Y = Year
 WW = Work Week
 G = Pb-Free Package

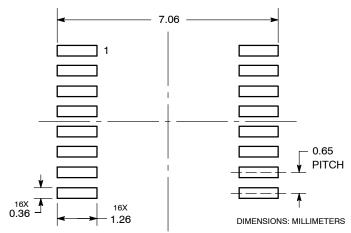
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.


STYLE 1:		STYLE 2:		STYLE 3:	S	TYLE 4:	
	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE #1
	BASE	2.	ANODE	2.	BASE. #1	2.	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER. #1	3.	
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	
	EMITTER	12.	CATHODE	12.		12.	
13.	BASE	13.		13.	COLLECTOR, #4	13.	BASE, #2
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE #1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		
3.	DRAIN, #2	3.	CATHODE	3.	COMMON DRAIN (OUTPUT)		
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH		
5.	DRAIN, #3	5.		5.	COMMON DRAIN (OUTPUT)		
6.	DRAIN, #3	6.		6.	COMMON DRAIN (OUTPUT)		
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPUT)		
0							
8.	DRAIN, #4		CATHODE	8.	SOURCE P-CH		
	GATE, #4	9.	ANODE	9.	SOURCE P-CH		
9. 10.	GATE, #4 SOURCE, #4	9. 10.	ANODE ANODE	9. 10.	SOURCE P-CH COMMON DRAIN (OUTPUT)		
9. 10. 11.	GATE, #4 SOURCE, #4 GATE, #3	9. 10. 11.	ANODE ANODE ANODE	9. 10. 11.	SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
9. 10. 11. 12.	GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3	9. 10. 11. 12.	ANODE ANODE ANODE ANODE	9. 10. 11. 12.	SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
9. 10. 11. 12. 13.	GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2	9. 10. 11. 12. 13.	ANODE ANODE ANODE ANODE ANODE	9. 10. 11. 12. 13.	SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH		
9. 10. 11. 12. 13. 14.	GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2	9. 10. 11. 12. 13.	ANODE ANODE ANODE ANODE ANODE ANODE	9. 10. 11. 12. 13.	SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT)		
9. 10. 11. 12. 13. 14.	GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2 GATE, #1	9. 10. 11. 12. 13. 14.	ANODE ANODE ANODE ANODE ANODE ANODE ANODE	9. 10. 11. 12. 13. 14.	SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
9. 10. 11. 12. 13. 14.	GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2	9. 10. 11. 12. 13.	ANODE ANODE ANODE ANODE ANODE ANODE	9. 10. 11. 12. 13.	SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT)		

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Docum- Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in re-			
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	.27P	PAGE 2 OF 2		

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 19 OCT 2006



TSSOP-16 WB

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL
- IN TERLEAD FLASH OH PROTHOSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40		0.252 BSC		
М	0 °	8 °	0 °	8 °	

RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L = Year W = Work Week G or • = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1		

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales