Analog Multiplexers/Demultiplexers
 MC14051B, MC14052B, MC14053B

The MC14051B, MC14052B, and MC14053B analog multiplexers are digitally-controlled analog switches. The MC14051B effectively implements an SP8T solid state switch, the MC14052B a DP4T, and the MC14053B a Triple SPDT. All three devices feature low ON impedance and very low OFF leakage current. Control of analog signals up to the complete supply voltage range can be achieved.

Features

- Triple Diode Protection on Control Inputs
- Switch Function is Break Before Make
- Supply Voltage Range $=3.0$ Vdc to 18 Vdc
- Analog Voltage Range $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right)=3.0$ to 18 V

Note: V_{EE} must be $\leq \mathrm{V}_{\mathrm{SS}}$

- Linearized Transfer Characteristics
- Low-noise - $12 \mathrm{nV} / \sqrt{\text { Cycle }}, \mathrm{f} \geq 1.0 \mathrm{kHz}$ Typical
- Pin-for-Pin Replacement for CD4051, CD4052, and CD4053
- For 4PDT Switch, See MC14551B
- For Lower R ${ }_{\text {ON }}$, Use the HC4051, HC4052, or HC4053 High-Speed CMOS Devices
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb -Free and are RoHS Compliant
MAXIMUM RATINGS (Voltages Referenced to $\left.\mathrm{V}_{\mathrm{SS}}\right)$

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range (Referenced to $\left.\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{SS}} \geq \mathrm{V}_{\mathrm{EE}}\right)$	-0.5 to +18.0	V
$\mathrm{V}_{\text {in }}$, $\mathrm{V}_{\text {out }}$	Input or Output Voltage Range $(\mathrm{DC}$ or Transient) Control Inputs and V_{EE} for Ser Switch I/O)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}$	Input Current (DC or Transient) per Control Pin	+10	mA
I_{SW}	Switch Through Current	± 25	mA
P_{D}	Power Dissipation per Package (Note 1)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$ This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{EE}}$ or $\left.\mathrm{V}_{\mathrm{DD}}\right)$. Unused outputs must be left open.

SOIC-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

MARKING DIAGRAMS

$1405 \times B G$ AWLYWW
SOIC-16

16 HABABHA	
$\begin{gathered} 14 \\ 05 x B \\ \text { ALYW } \end{gathered}$	

TSSOP-16

X	$=1,2$, or 3
A	$=$ Assembly Location
WL, L	$=$ Wafer Lot
Y	$=$ Year
WW, W	$=$ Work Week
G or -	$=$ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

MC14051B, MC14052B, MC14053B

MC14051B
8-Channel Analog Multiplexer/Demultiplexer

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=\mathrm{PIN} 16 \\
& \mathrm{~V}_{\mathrm{SS}}=\mathrm{PIN} 8 \\
& \mathrm{~V}_{\mathrm{EE}}=\mathrm{PIN} 7
\end{aligned}
$$

MC14052B
Dual 4-Channel Analog Multiplexer/Demultiplexer

$V_{D D}=P I N 16$
$V_{S S}=P I N 8$
$V_{E E}=\operatorname{PIN} 7$

MC14053B
Triple 2-Channel Analog Multiplexer/Demultiplexer

$$
\begin{gathered}
V_{D D}=\operatorname{PIN} 16 \\
V_{S S}=\operatorname{PIN} 8 \\
V_{E E}=\operatorname{PIN} 7
\end{gathered}
$$

Note: Control Inputs referenced to V_{SS}, Analog Inputs and Outputs reference to $\mathrm{V}_{\mathrm{EE}} . \mathrm{V}_{\mathrm{EE}}$ must be $\leq \mathrm{V}_{\mathrm{SS}}$.

PIN ASSIGNMENT

	MC14051B		
X4	$1 \bullet$	16	$V_{D D}$
X6	2	15	X2
X [3	14	X1
X7	4	13	X0
X5	5	12	X3
INH	6	11	A
V_{EE}	7	10	B
VSS	8	9	C

MC14052B

Y0	$1 \bullet$	16	$V_{D D}$
Y2	2	15	X2
Y	3	14	X1
Y3	4	13	X
Y1	5	12	X0
INH [6	11	X3
V_{EE}	7	10	A
VSS	8	9	B

MC14053B

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$V_{\text {D }}$	Test Conditions	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
				Min	Max	Min	Typ (Note 2)	Max	Min	Max	

SUPPLY REQUIREMENTS (Voltages Referenced to V_{EE})

Power Supply Voltage Range	$V_{\text {D }}$	-	$\mathrm{V}_{\mathrm{DD}}-3.0 \geq \mathrm{V}_{\mathrm{SS}} \geq \mathrm{V}_{\mathrm{EE}}$	3.0	18	3.0	-	18	3.0	18	V
Quiescent Current Per Package	I_{DD}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	Control Inputs: $V_{\text {in }}=V_{S S} \text { or } V_{D D}$ Switch I/O: $\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{I} / \mathrm{O}} \leq$ V_{DD}, and $\Delta \mathrm{V}_{\text {switch }} \leq$ 500 mV (Note 3)	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$		$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$
Total Supply Current (Dynamic Plus Quiescent, Per Package	$\mathrm{I}_{\mathrm{D}(\mathrm{AV})}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ only (The channel component, $\left(V_{\text {in }}-V_{\text {out }}\right) / R_{\text {on }}$, is not included.)		Typical		$(0.07 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}}$ $(0.20 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}}$ $(0.36 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{l}_{\mathrm{DD}}$				$\mu \mathrm{A}$

CONTROL INPUTS - INHIBIT, A, B, C (Voltages Referenced to V_{SS})

Low-Level Input Voltage	V_{IL}	5.0	$\mathrm{R}_{\text {on }}=$ per spec,	-	1.5	-	2.25	1.5	-	1.5	V
		10	$\mathrm{l}_{\text {off }}=$ per spec	-	3.0	-	4.50	3.0	-	3.0	
		15		-	4.0	-	6.75	4.0	-	4.0	
High-Level Input Voltage	V_{IH}	5.0	$\mathrm{R}_{\text {on }}=$ per spec,	3.5	-	3.5	2.75	-	3.5	-	V
		10	$\mathrm{I}_{\text {off }}=$ per spec	7.0	-	7.0	5.50	-	7.0	-	
		15		11	-	11	8.25	-	11	-	
Input Leakage Current	$\mathrm{I}_{\text {in }}$	15	$\mathrm{~V}_{\text {in }}=0$ or V_{DD}	-	± 0.1	-	± 0.00001	± 0.1	-	1.0	$\mu \mathrm{~A}$
Input Capacitance	$\mathrm{C}_{\text {in }}$	-		-	-	-	5.0	7.5	-	-	pF

SWITCHES IN/OUT AND COMMONS OUT/IN - X, Y, Z (Voltages Referenced to $\mathrm{V}_{\text {EE }}$)

Recommended Peak-to-Peak Voltage Into or Out of the Switch	$\mathrm{V}_{1 / \mathrm{O}}$	-	Channel On or Off	0	$V_{\text {DD }}$	0	-	$V_{D D}$	0	V_{DD}	$V_{P P}$
Recommended Static or Dynamic Voltage Across the Switch (Note 3) (Figure 5)	$\Delta \mathrm{V}_{\text {switch }}$	-	Channel On	0	600	0	-	600	0	300	mV
Output Offset Voltage	V_{OO}	-	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$, No Load	-	-	-	10	-	-	-	$\mu \mathrm{V}$
ON Resistance	$\mathrm{R}_{\text {on }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \Delta \mathrm{V}_{\text {switch }} \leq 500 \mathrm{mV} \\ & (\text { Note } 3) \mathrm{V}_{\text {in }} \mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \text { (Control), and } \mathrm{V}_{\text {in }} \\ & 0 \text { to } \mathrm{V}_{\mathrm{DD}}(\text { Switch }) \end{aligned}$	-	$\begin{aligned} & 800 \\ & 400 \\ & 220 \end{aligned}$	-	$\begin{gathered} 250 \\ 120 \\ 80 \end{gathered}$	$\begin{gathered} 1050 \\ 500 \\ 280 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 1200 \\ 520 \\ 300 \end{gathered}$	Ω
\triangle ON Resistance Between Any Two Channels in the Same Package	$\Delta \mathrm{R}_{\text {on }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		-	$\begin{aligned} & 70 \\ & 50 \\ & 45 \end{aligned}$		$\begin{aligned} & 25 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 70 \\ & 50 \\ & 45 \end{aligned}$		$\begin{aligned} & 135 \\ & 95 \\ & 65 \end{aligned}$	Ω
Off-Channel Leakage Current (Figure 10)	$\mathrm{l}_{\text {off }}$	15	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$ (Control) Channel to Channel or Any One Channel	-	± 100	-	± 0.05	± 100	-	± 1000	nA
Capacitance, Switch I/O	$\mathrm{Cl}_{1 / \mathrm{O}}$	-	Inhibit $=\mathrm{V}_{\text {DD }}$	-	-	-	10	-	-	-	pF
Capacitance, Common O/I	$\mathrm{C}_{\mathrm{O} / 1}$	-	$\begin{aligned} & \text { Inhibit }=V_{D D} \\ & (\text { MC14051B }) \\ & (\text { MC14052B }) \\ & (M C 14053 B) \end{aligned}$	-	-	-	$\begin{aligned} & 60 \\ & 32 \\ & 17 \end{aligned}$	-	-	$\begin{aligned} & - \\ & - \end{aligned}$	pF
Capacitance, Feedthrough (Channel Off)	$\mathrm{C}_{1 / 0}$	-	Pins Not Adjacent Pins Adjacent	-	-	-	$\begin{aligned} & \hline 0.15 \\ & 0.47 \end{aligned}$	-	-	-	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.
3. For voltage drops across the switch $\left(\Delta V_{\text {switch }}\right)>600 \mathrm{mV}\left(>300 \mathrm{mV}\right.$ at high temperature), excessive V_{DD} current may be drawn, i.e. the current out of the switch may contain both $V_{D D}$ and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

ELECTRICAL CHARACTERISTICS (Note 4) ($\left.\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{SS}}\right.$ unless otherwise indicated)

Characteristic	Symbol	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}} \\ \mathrm{Vdc} \end{gathered}$	Typ (Note 5) All Types	Max	Unit
Propagation Delay Times (Figure 6) Switch Input to Switch Output ($R_{L}=1 \mathrm{k} \Omega$) MC14051 $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.17 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+26.5 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\text {PHL }}=(0.08 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+11 \mathrm{~ns}$ $t_{\text {PLH }}, t_{\text {PHL }}=(0.06 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.0 \mathrm{~ns}$	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 35 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 90 \\ & 40 \\ & 30 \end{aligned}$	ns
$\begin{aligned} & \mathrm{MC} 14052 \\ & \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(0.17 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+21.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\text {PHL }}=(0.08 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+8.0 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(0.06 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+7.0 \mathrm{~ns} \end{aligned}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 30 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & 25 \end{aligned}$	ns
$\begin{aligned} & \mathrm{MC} 14053 \\ & \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(0.17 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+16.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PH}}=(0.08 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+4.0 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(0.06 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+3.0 \mathrm{~ns} \end{aligned}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 65 \\ & 20 \\ & 15 \end{aligned}$	ns
Inhibit to Output ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}$) Output "1" or "0" to High Impedance, or High Impedance to " 1 " or " 0 " Level MC14051B	$\mathrm{t}_{\mathrm{PHZ}}, \mathrm{t}_{\mathrm{PLZ}}$, $t_{\text {PZH }}, t_{P Z L}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 350 \\ & 170 \\ & 140 \end{aligned}$	$\begin{aligned} & 700 \\ & 340 \\ & 280 \end{aligned}$	ns
MC14052B		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 300 \\ & 155 \\ & 125 \end{aligned}$	$\begin{aligned} & 600 \\ & 310 \\ & 250 \end{aligned}$	ns
MC14053B		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 275 \\ & 140 \\ & 110 \end{aligned}$	$\begin{aligned} & 550 \\ & 280 \\ & 220 \end{aligned}$	ns
Control Input to Output ($\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}$) MC14051B	tPLH tPHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 360 \\ & 160 \\ & 120 \end{aligned}$	$\begin{aligned} & 720 \\ & 320 \\ & 240 \end{aligned}$	ns
MC14052B		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 325 \\ 130 \\ 90 \end{gathered}$	$\begin{aligned} & 650 \\ & 260 \\ & 180 \end{aligned}$	ns
MC14053B		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 300 \\ 120 \\ 80 \end{gathered}$	$\begin{aligned} & 600 \\ & 240 \\ & 160 \end{aligned}$	ns
Second Harmonic Distortion $\left(R_{L}=10 \mathrm{~K} \Omega, \mathrm{f}=1 \mathrm{kHz}\right) \mathrm{V}_{\mathrm{in}}=5 \mathrm{~V}_{\mathrm{PP}}$	-	10	0.07	-	\%
$\begin{array}{\|l} \text { Bandwidth (Figure 7) } \\ \quad\left(R_{L}=50 \Omega, V_{\text {in }}=1 / 2\left(V_{D D}-V_{E E}\right) p-p, C_{L}=50 \mathrm{pF}\right. \\ \left.20 \mathrm{Log}\left(V_{\text {out }} / V_{\text {in }}\right)=-3 \mathrm{~dB}\right) \end{array}$	BW	10	17	-	MHz
Off Channel Feedthrough Attenuation (Figure 7) $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{~V}_{\text {in }}=1 / 2\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right) \mathrm{p}-\mathrm{p} \\ & \mathrm{f}_{\mathrm{in}}=4.5 \mathrm{MHz}-\mathrm{MC} 14051 \mathrm{~B} \\ & \mathrm{f}_{\mathrm{in}}=30 \mathrm{MHz}-\mathrm{MC} 14052 \mathrm{~B} \\ & \mathrm{f}_{\text {in }}=55 \mathrm{MHz}-\mathrm{MC} 14053 \mathrm{~B} \end{aligned}$	-	10	-50	-	dB
$\begin{aligned} & \text { Channel Separation (Figure 8) } \\ & \quad\left(R_{L}=1 \mathrm{k} \Omega, V_{\text {in }}=1 / 2\left(V_{D D}-V_{E E}\right) p-p,\right. \\ & f_{\text {in }}=3.0 \mathrm{MHz} \end{aligned}$	-	10	-50	-	dB
Crosstalk, Control Input to Common O/I (Figure 9) $\begin{aligned} & \left(\mathrm{R}_{1}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right. \\ & \text { Control } \left.\mathrm{t}_{\mathrm{TLH}}=\mathrm{t}_{\mathrm{THL}}=20 \mathrm{~ns}, \text { Inhibit }=\mathrm{V}_{\mathrm{SS}}\right) \end{aligned}$	-	10	75	-	mV

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
5. Data labelled "Typ" is not lo be used for design purposes but In intended as an indication of the IC's potential performance.

Figure 1. Switch Circuit Schematic

TRUTH TABLE

Control Inputs				ON Switches					
Inhibit	Select								
	C*	B	A	MC14051B	MC14052B		MC14053B		
0	0	0	0	X0	Y0	X0	Z0	Y0	X0
0	0	0	1	X1	Y1	X1	Z0	Y0	X1
0	0	1	0	X2	Y2	X2	Z0	Y1	X0
0	0	1	1	X3	Y3	X3	Z0	Y1	X1
0	1	0	0	X4			Z1	Y0	X0
0		0	1	X5			Z1	Y0	X1
0		1	0	X6			Z1	Y1	X0
0	1	1	1	X7			Z1	Y1	X1
1	x	x	x	None				Non	
*Not applicable for MC14052 x = Don't Care									

Figure 3. MC14052B Functional Diagram

Figure 2. MC14051B Functional Diagram

Figure 4. MC14053B Functional Diagram

Figure 5. $\Delta \mathrm{V}$ Across Switch

Figure 7. Bandwidth and Off-Channel Feedthrough Attenuation

Figure 9. Crosstalk, Control Input to Common O/I

Figure 6. Propagation Delay Times, Control and Inhibit to Output

Figure 8. Channel Separation (Adjacent Channels Used For Setup)

Figure 10. Off Channel Leakage

MC14051B, MC14052B, MC14053B

TYPICAL RESISTANCE CHARACTERISTICS

Figure 12. $\mathrm{V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-7.5 \mathrm{~V}$

Figure 14. $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$

Figure 13. $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$

Figure 15. Comparison at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=-\mathrm{V}_{\mathrm{EE}}$

MC14051B, MC14052B, MC14053B

APPLICATIONS INFORMATION

Figure A illustrates use of the on-chip level converter detailed in Figures 2, 3, and 4. The 0-to-5 V Digital Control signal is used to directly control a $9 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ analog signal.

The digital control logic levels are determined by V_{DD} and V_{SS}. The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example, $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}=$ logic high at the control inputs; $\mathrm{V}_{\mathrm{SS}}=\mathrm{GND}=0 \mathrm{~V}=$ logic low.

The maximum analog signal level is determined by V_{DD} and V_{EE}. The V_{DD} voltage determines the maximum recommended peak above V_{SS}. The V_{EE} voltage determines the maximum swing below V_{SS}. For the example, $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V}$ maximum swing above V_{SS}; $\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{EE}}=5 \mathrm{~V}$ maximum swing below V_{SS}. The example shows a $\pm 4.5 \mathrm{~V}$ signal which allows a $1 / 2$ volt margin at each
peak. If voltage transients above V_{DD} and/or below V_{EE} are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.
The absolute maximum potential difference between V_{DD} and V_{EE} is 18.0 V . Most parameters are specified up to 15 V which is the recommended maximum difference between V_{DD} and V_{EE}.

Balanced supplies are not required. However, V_{SS} must be greater than or equal to V_{EE}. For example, $\mathrm{V}_{\mathrm{DD}}=+10 \mathrm{~V}$, $\mathrm{V}_{\mathrm{SS}}=+5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{EE}}-3 \mathrm{~V}$ is acceptable. See the Table below.

Figure A. Application Example

Figure B. External Germanium or Schottky Clipping Diodes

POSSIBLE SUPPLY CONNECTIONS

\mathbf{V}_{DD} In Volts	$\mathbf{V}_{\mathbf{S S}}$ In Volts	\mathbf{V}_{EE} In Volts	Cogic High/Logic Low In Volts	Maximum Analog Signal Range In Volts
+8	0	-8	$+8 / 0$	+8 to $-8=16 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
+5	0	-12	$+5 / 0$	+5 to $-12=17 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
+5	0	0	$+5 / 0$	+5 to $0=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
+5	0	-5	$+5 / 0$	+5 to $-5=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
+10	+5	-5	$+10 /+5$	+10 to $-5=15 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$

ORDERING INFORMATION

Device	Package	Shipping †
MC14051BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14051BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
MC14051BDR2G	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLV14051BDR2G*	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
MC14051BDTR2G	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLV14051BDTR2G*	TSSOP-16 (Pb-Free)	2500 / Tape \& Reel

MC14052BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14052BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
MC14052BDR2G	SOIC-16 (Pb-Free)	2500 / Tape \& Reel
NLV14052BDR2G*	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
MC14052BDTR2G	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLV14052BDTR2G*	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel

MC14053BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14053BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
MC14053BDR2G	SOIC-16 (Pb-Free)	2500 / Tape \& Reel
NLV14053BDR2G*	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
MC14053BDTR2G	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLV14053BDTR2G*	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

SOIC-16 9.90x3.90×1.50 1.27P
CASE 751B
ISSUE L
DATE 29 MAY 2024

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 mm PER SIDE.
5. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 mm TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION.

MILLIMETERS			
DIM	MIN	NOM	MAX
A	1.35	1.55	1.75
A1	0.00	0.05	0.10
A2	1.35	1.50	1.65
b	0.35	0.42	0.49
c	0.19	0.22	0.25
D	9.90 BSC		
E	6.00 BSC		
E1	3.90 BSC		
e	1.27 BSC		
h	0.25	---	0.50
L	0.40	0.83	1.25
L1	1.05 REF		
O	0	---	$7 \cdot$
TOLERANCE OF FORM AND POSITION			
aaa	0.10		
bbb	0.20		
ccc	0.10		
ddd	0.25		
eee	0.10		

RECOMMENDED MOUNTING FOOTPRINT
*FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE onsemi SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B		Document Repositon: rin red.
DESCRIPTION:	SOIC-16 9.90X3.90X1.50 1.27P		PAGE 1 OF 2

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.50 1.27P CASE 751B ISSUE L

GENERIC

MARKING DIAGRAM*

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:	
PIN 1.	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE \#1	PIN 1.	COLLECTOR, DYE \#1
2.	BASE	2.	ANODE	2.	BASE, \#1	2.	COLLECTOR, \#1
3.	Emitter	3.	NO CONNECTION	3.	EMITTER, \#1	3.	COLLECTOR, \#2
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, \#1	4.	COLLECTOR, \#2
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, \#2	5.	COLLECTOR, \#3
6.	BASE	6.	NO CONNECTION	6.	BASE, \#2	6.	COLLECTOR, \#3
7.	COLLECTOR	7.	ANODE	7.	EMITTER, \#2	7.	COLLECTOR, \#4
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, \#2	8.	COLLECTOR, \#4
9.	BASE	9.	CATHODE	9.	COLLECTOR, \#3	9.	BASE, \#4
10.	EMITTER	10.	ANODE	10.	BASE, \#3	10.	EMITTER, \#4
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, \#3	11.	BASE, \#3
12.	EMITTER	12.	CATHODE	12.	COLLECTOR, \#3	12.	EMITTER, \#3
13.	BASE	13.	CATHODE	13.	COLLECTOR, \#4	13.	BASE, \#2
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, \#4	14.	EMITTER, \#2
15.	EMITTER	15.	ANODE	15.	EMITTER, \#4	15.	BASE, \#1
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, \#4	16.	EMITTER, \#1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE \#1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, \#1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		
3.	DRAIN, \#2	3.	CATHODE	3.	COMMON DRAIN (OUTPUT)		
4.	DRAIN, \#2	4.	CATHODE	4.	GATE P-CH		
5.	DRAIN, \#3	5.	CATHODE	5.	COMMON DRAIN (OUTPUT)		
6.	DRAIN, \#3	6.	CATHODE	6.	COMMON DRAIN (OUTPUT)		
7.	DRAIN, \#4	7.	CATHODE	7.	COMMON DRAIN (OUTPUT)		
8.	DRAIN, \#4	8.	CATHODE	8.	SOURCE P-CH		
9.	GATE, \#4	9.	ANODE	9.	SOURCE P-CH		
10.	SOURCE, \#4	10.	ANODE	10.	COMMON DRAIN (OUTPUT)		
11.	GATE, \#3	11.	ANODE	11.	COMMON DRAIN (OUTPUT)		
12.	SOURCE, \#3	12.	ANODE	12.	COMMON DRAIN (OUTPUT)		
13.	GATE, \#2	13.	ANODE	13.	GATE N-CH		
14.	SOURCE, \#2	14.	ANODE	14.	COMMON DRAIN (OUTPUT)		
15.	GATE, \#1	15.	ANODE	15.	COMMON DRAIN (OUTPUT)		
16.	SOURCE, \#1	16.	ANODE	16.	SOURCE N-CH		

| DOCUMENT NUMBER: | 98ASB42566B | Electronic Versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 9.90X3.90X1.501.27P | PAGE 2 OF 2 |

[^1]

TSSOP-16 WB
CASE 948F
ISSUE B
DATE 19 OCT 2006

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL in EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE - W -

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
c		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	SC	0.026	BSC
H	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BC	0.25	BSC
M	0°	8°	0°	8°

GENERIC MARKING DIAGRAM*	
XXXX	= Specific Device Code
A	= Assembly Location
L	= Wafer Lot
Y	= Year
W	= Work Week
G or -	= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

[^2]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

[^1]: onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

[^2]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

