

Is Now Part of

OR NEW DESIGN

DN Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and safety requirements or standards, regardless of any support or application provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unauthorized sage and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduct

FSUSB11 Low-Power, Full-Speed (12Mbps) Switch

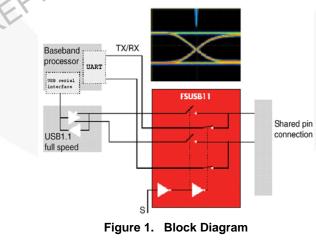
May 2024

FSUSB11 — Low-Power, Full-Speed (12Mbps) Switch

Features

FAIRCHILD SEMICONDUCTOR

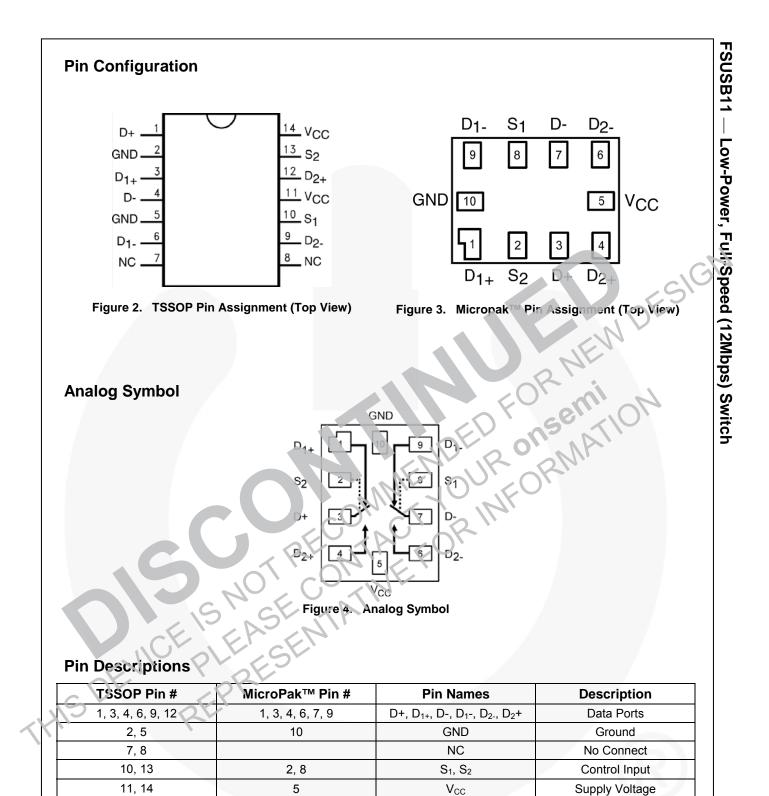
- Space Saving MicroPak[™] (1.6 x 2.1mm)
- USB 1.1 Signal Switching Compliant
- 3db Bandwidth: >350MHz
- Maximum 1.15Ω R_{ON} at 4.5V V_{CC} and 4Ω for 2.7V Supply
- 0.3Ω Maximum R_{ON} Flatness for +5V Supply
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- Fast Turn-On and Turn-Off Time
- Break-Before-Make Enable Circuitry
- Over-Voltage Tolerant, TTL-Compatible **Control Input**


Applications

Cell Phones, PDAs, Digital Cameras, Notebook Computers

Ordering Information

Part Number	Operating Temperature Range	Eco Status	Package	Packing Method
FSUSB11L10X	-40 to +85°C	Rohs	10-⊾ead, MicroPak™, JEDEC MO255,1.6 X 2.1mm	Tape and Reel
FSUSB11MTCX	-40 to +85°C	RoHS	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	Tape and Reel


For Faircnild's definition of Eco S atus, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html

MicroPak[™] is a trademark of Fairchild Semiconductor Corporation

Description

The FSUSB11 is a high-performance, dual Single-Pole Double-Throw (SPDT) switch designed for switching USB 1.1 signals. The device features ultra-low on resistance (\tilde{R}_{ON}) of 1.15 Ω maximum at 4.5V V_{CC} and 4.3Ω at 2.7V supply. High bandwidth and ultra low (Ron). make this switch able to pass both USB low- and rullspeed signal with minimum signal distortion. The device ACEORATION Service of the service of is fabricated with sub-micron CMOS technology to achieve fast switching speeds and designed for breakbefore-make operation. The select input is TTL-level

Truth Table

Control Inputs	Function
Low Logic Level	D ₁ Connected to D+/D-
High Logic Level	D ₂ Connected to D+/D-

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	6.0	V
Vs	Switch Voltage	-0.5	V _{CC} + 0.5	V
V _{IN}	Input Voltage ⁽¹⁾	-0.5	6.0	V
I _{IK}	Input Diode Current	-50		mA
Isw	Switch Current		200	mA
ISWPEAK	Peak Switch Current (Pulsed at 1ms Duration, <10% Duty Cycle)		400	mA
T _{STG}	Storage Temperature Range	-65	+150	°C
TJ	Maximum Junction Temperature		+150	С
TL	Lead Temperature (Soldering, 10 Seconds)		+260	°C
ESD	Human Body Model, JESD22-A114		8	kV

Note:

 The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions able defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{cc}	Power Supply	1.65	5.50	V
V _{IN}	Control Input Voltage ⁽²⁾	0	V _{CC}	V _{CC}
Vsw	Switch Input Voltage	0	V _{CC}	Vcc
T _A	Operating Temperature	-40	+85	°C

Unused inputs must be held HIGH or LOW. They may not float.

FSUSB11 — Low-Power, Full-Speed (12Mbps) Switch

DC Electrical Characteristics

Unless otherwise specified, typical values are at +25°C.

Symbol	nbol Parameter		Conditions	V _{cc} (V)	т	_A =+25	°C		40 to 5°C	Units	
-					Min.	Тур.	Max.	Min.	Max.		
VIH	Input Voltage High			2.7 to 3.6				2.0		v	
				4.5 to 5.5				4.0			
VIL	Input Voltage Low			2.7 to 3.6 4.5 to 5.5						V	
				4.5 to 3.5 2.7 to 3.6							
I _{IN}	Control Input Leaka	age	V_{IN} =0V to V_{CC}	4.5 to 5.5						μA	
I _{NO(OFF),} I _{NO(OFF)}	Off-Leakage Currer	nt of Port	A=1V, 4.5V, B ₀ or B ₁ =1V, 4.5V	5.5	-50		50	-100	100	nA	
I _{A(ON)}	On-Leakage Currer Port D	nt of	A=1V, 4.5V, B_0 or B ₁ =1V, 4.5V or Floating	5.5	50		50	-100	100	nA	
	$R_{ON} \begin{array}{c} \text{Switch On} \\ \text{Resistance}^{(3)} \end{array} \begin{array}{c} \text{Micropak} & \begin{array}{c} D_1 \text{ or} \\ I_{OUT} = \\ D_1 \text{ or} \\ I_{O$	Switch On	Mieropok	I _{OUT} = 100mA, D ₁ or D ₂ =1.5V	2.7		2.60	4.00	i	4.30	
Paul			Switch On D_1 or $D_2=3.5\sqrt{100}$		4.5	20	0.95	1.15		1.30	Ω
RON		TSSOD	I _{OUT} = 100mA, D₁ or D₂=1.5V	2.7		2.80		NP.	4.50	52	
		lou⊤= 100mA, D₁ or D₂=3.5V	4.5	\mathcal{S}	1.50			3.00			
	On Resistance	Micropak	out= 100.mA,		1	0.06	0.12		0.15		
ΔR_{ON}	Matching Bet een Channel ⁽⁴⁾	TSSOP	D ₁ or D ₂ =3.5V	4.5		0.07			0.30	Ω	
		(5)	'ou⊤=100mA, D₁ or D₂=0\/, 0 75V, 1.5\/	2.7		1.4					
R _{FLAT} (ON)	On Resistar → Flatness ⁽⁵⁾		I _{OUT} =100mA. B ₀ or B₁=0V, 1¼, 2V	4.5		0.2	0.3		0.4	Ω	
	Quiescent Supply (Carrent	V _{II} =0V or V _{CC} ,	3.6		0.1	0.5		1.0	μA	
100	action oupply t	Jurient	1 _{ΟUT} =0	5.5		0.1	0.5		1.0	μΛ	

Notes:

 $\langle 1 \rangle$

<

On resistance is determined by the voltage drop between D and Dn pins at the indicated current through the 3. switch.

4. $\Delta R_{ON} = R_{ONmax} - R_{ONmin}$ measured at identical V_{CC}, temperature, and voltage. 5.

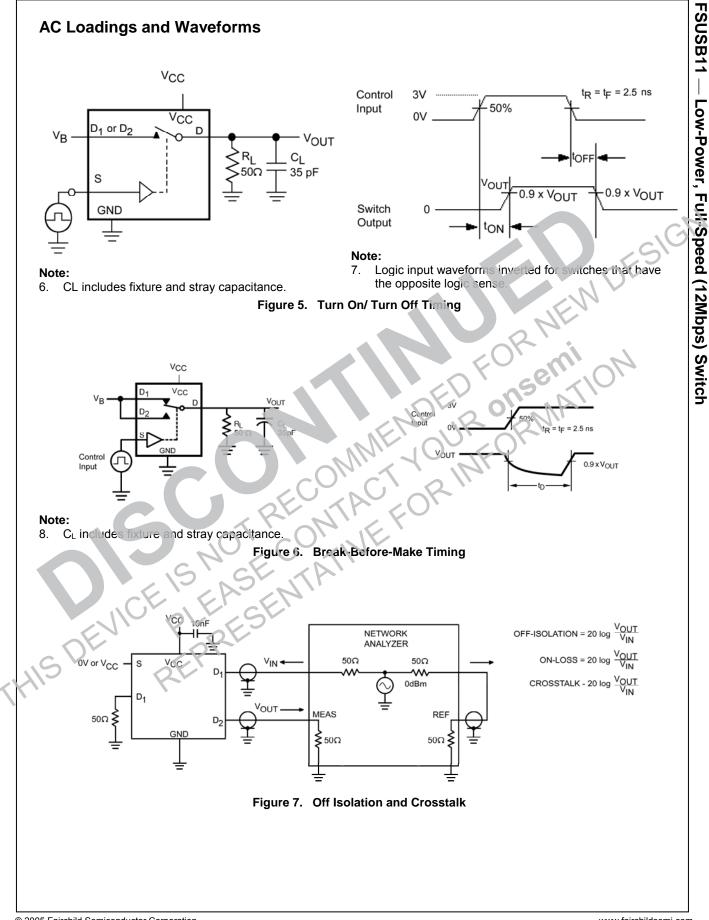
1-

Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.

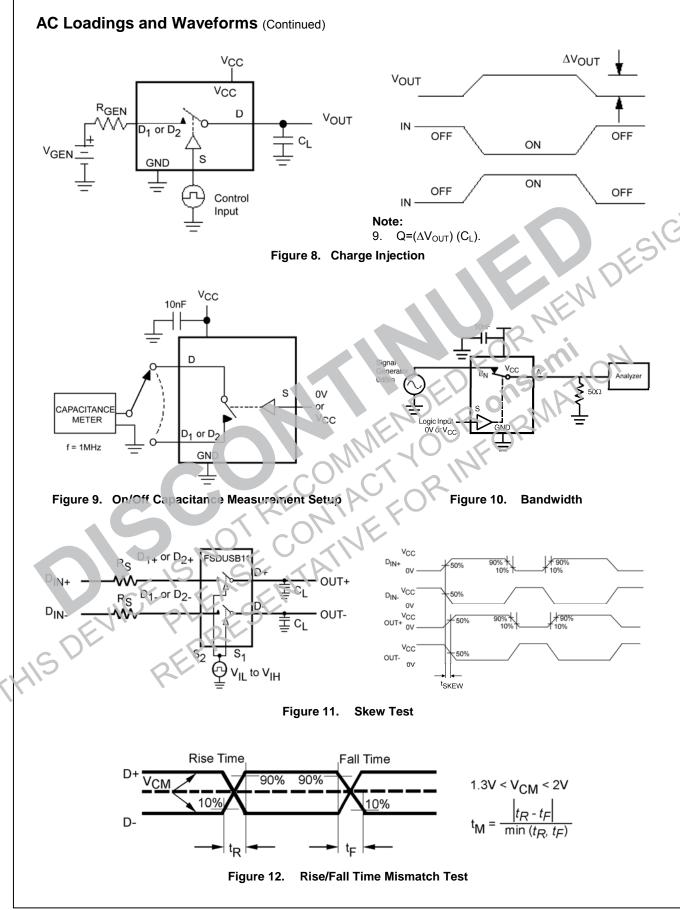
Parameter	Conditions	V _{cc} (V)	T _A =+25°C			T _A =-40 to +85°C		Units	Figure
			Min.	Тур.	Max.	Min.	Max.		5
Turn-on Time	D_1 or D_2 =1.5V, R _L =50 Ω , C _L =35pF	2.7 to 3.6			50		60	20	Eiguro 5
t _{oN} S-to-Bus B	D_1 or D_2 =3.0V, R _L =50 Ω , C _L =35pF	4.5 to 5.5			35		30		Figure 5
Turn-off Time	$D_1 \text{ or } D_2=1.5V,$ $R_L=50\Omega, C_L=35pF$	2.7 to 3.6			20		20		S
toFF S-to-Bus B	D ₁ or D ₂ =3.0V, R _L =50Ω, C _L =35pF	4.5 to 5.5			15			ns	Figure 5
Break-Before-Make	D_1 or D_2 =1.5V, R _L =50 Ω , C _L =35pF	2.7 to 3.6				1	1	20	Figure 6
Time	$D_1 \text{ or } D_2=3.0V, R_L=50\Omega, C_L=35pF$	4.5 to 5.5		20	ED	on	e		rigule o
Charge Injection	C _L =1.0nF,	2.7 to 3.6		20				5	Figure 8
Charge injection	$V_{GEN}=0V, R_{GEN}=0\Omega$	4.5 to 5.5		10		C)		ρc	i igule o
Off Isolation	f=1MHz, R _L =50Ω	2.7 tc 3.6	3	-70 -70	$\frac{1}{10}$			dB	Figure 7
Non-Adjacent		2.7 to 3.6		75					
Char el Crosstalk		K	-75				dB	Figure 7	
-3dB Bandwidth	Ri=500	2.7 to 3.6	5	350				MHz	Figure 10
	S-to-Bus B Turn-off Time S-to-Bus B Break-Before-Make Time Charge Injection Off Isolation Non-Adjacent	Turn-on Time S-to-Bus B $R_L = 50\Omega$, $C_L = 35pF$ $D_1 \text{ or } D_2 = 3.0V$, $R_L = 50\Omega$, $C_L = 35pF$ Turn-off Time S-to-Bus B $D_1 \text{ or } D_2 = 1.5V$, $R_L = 50\Omega$, $C_L = 35pF$ $D_1 \text{ or } D_2 = 3.0V$, $R_L = 50\Omega$, $C_L = 35pF$ Break-Before-Make Time $D_1 \text{ or } D_2 = 3.0V$, $R_L = 50\Omega$, $C_L = 35pF$ Break-Before-Make Time $D_1 \text{ or } D_2 = 3.0V$, $R_L = 50\Omega$, $C_L = 35pF$ Charge Injection $C_L = 1.0nF$, $V_{GEN} = 0V$, $R_{CEN} = 0\Omega$ Off Isolation $f = 1NHz$, $R_L = 50\Omega$ Non-A djacent Charnel Crosstalk $I = 1MHz$, $R_L = 50\Omega$	$\frac{R_{L}=50\Omega, C_{L}=35pF}{P_{L}=50\Omega, C_{L}=35pF} = 2.7 \text{ to } 3.6}$ $\frac{R_{L}=50\Omega, C_{L}=35pF}{P_{L}=50\Omega, C_{L}=35pF} = 4.5 \text{ to } 5.5$ $\frac{D_{1} \text{ or } D_{2}=3.0V, R_{L}=50\Omega, C_{L}=35pF}{P_{L}=50\Omega, C_{L}=35pF} = 2.7 \text{ to } 3.6$ $\frac{D_{1} \text{ or } D_{2}=1.5V, R_{L}=50\Omega, C_{L}=35pF}{D_{1} \text{ or } D_{2}=3.0V, R_{L}=50\Omega, C_{L}=35pF} = 2.7 \text{ to } 3.6$ $\frac{D_{1} \text{ or } D_{2}=3.0V, R_{L}=50\Omega, C_{L}=35pF}{D_{1} \text{ or } D_{2}=1.5V, R_{L}=50\Omega, C_{L}=35pF} = 2.7 \text{ to } 3.6$ $\frac{D_{1} \text{ or } D_{2}=3.0V, R_{L}=50\Omega, C_{L}=35pF}{D_{1} \text{ or } D_{2}=3.0V, R_{L}=50\Omega, C_{L}=35pF} = 2.7 \text{ to } 3.6$ $\frac{D_{1} \text{ or } D_{2}=3.0V, R_{L}=50\Omega, C_{L}=35pF}{D_{1} \text{ or } D_{2}=3.0V, R_{L}=50\Omega, C_{L}=35pF} = 2.7 \text{ to } 3.6$ $\frac{C_{L}=1.0nF, V_{G}=0V, R_{G}=00}{V_{G}=0V, R_{G}=00} = \frac{2.7 \text{ to } 3.6}{4.5 \text{ to } 5.5}$ $\frac{Off \text{ Isolation}}{Charnel Crosstalk} = \frac{C_{L}=1.0nF, V_{L}=50\Omega}{100} = \frac{2.7 \text{ to } 3.6}{4.5 \text{ to } 5.5}$ $\frac{2.7 \text{ to } 3.6}{4.5 \text{ to } 5.5} = \frac{2.7 \text{ to } 3.6}{4.5 \text{ to } 5.5}$	$ \begin{array}{c} \label{eq:starsest} \begin{tabular}{ c c c c c } & D_1 \mbox{ or } D_2=1.5 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=1.5 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{V}, \\ R_L=50 \Omega, \ C_L=35 \mbox{pF} \\ \hline D_1 \mbox{ or } D_2=3.0 \mbox{P} \\ \hline D_1 \mbox{ or } D_2=3.0 $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{D_{1} \text{ or } D_{2}=1.5V,}{P_{R}=50\Omega, C_{L}=35pF} 2.7 \text{ to } 3.6 } 2.7 \text{ to } 3.6 } 50 $ $ \frac{D_{1} \text{ or } D_{2}=3.0V,}{P_{L}=50\Omega, C_{L}=35pF} 4.5 \text{ to } 5.5 } 35 $ $ \frac{D_{1} \text{ or } D_{2}=3.0V,}{P_{L}=50\Omega, C_{L}=35pF} 2.7 \text{ to } 3.6 } 20 $ $ \frac{D_{1} \text{ or } D_{2}=1.5V,}{P_{L}=50\Omega, C_{L}=35pF} 2.7 \text{ to } 3.6 } 20 $ $ \frac{D_{1} \text{ or } D_{2}=3.0V,}{P_{L}=50\Omega, C_{L}=35pF} 4.5 \text{ to } 5.5 } 15 $ $ \frac{D_{1} \text{ or } D_{2}=3.0V,}{P_{L}=50\Omega, C_{L}=35pF} 4.5 \text{ to } 5.5 } 15 $ $ \frac{D_{1} \text{ or } D_{2}=3.0V,}{P_{L}=50\Omega, C_{L}=35pF} 2.7 \text{ to } 3.6 } 20 $ $ \frac{D_{1} \text{ or } D_{2}=3.0V,}{P_{L}=50\Omega, C_{L}=35pF} 2.7 \text{ to } 3.6 } 20 $ $ \frac{D_{1} \text{ or } D_{2}=3.0V,}{P_{L}=50\Omega, C_{L}=35pF} 4.5 \text{ to } 5.5 } 20 $ $ \frac{1}{100} $ $ \frac{D_{1} \text{ or } D_{2}=3.0V,}{P_{L}=50\Omega, C_{L}=35pF} 4.5 \text{ to } 5.5 } 10 $ $ \frac{2.7 \text{ to } 3.6 } 20 $ $ \frac{2.7 \text{ to } 3.6 } 20 $ $ \frac{1}{100} $ $ \frac{C_{L}=1.0 \text{ IF}}{C_{L}=1.0 \text{ IF}} 2.7 \text{ to } 3.6 } 20 $ $ \frac{1}{4.5 \text{ to } 5.5 } 10 $ $ \frac{2.7 \text{ to } 3.6 } 20 $ $ \frac{1}{4.5 \text{ to } 5.5 } 10 $ $ \frac{2.7 \text{ to } 3.6 } 20 $ $ \frac{1}{4.5 \text{ to } 5.5 } 10 $ $ \frac{2.7 \text{ to } 3.6 } 20 $ $ \frac{2.7 \text{ to } 3.6 } 20 $ $ \frac{2.7 \text{ to } 3.6 } 20 $ $ \frac{2.7 \text{ to } 3.6 } 20 $ $ \frac{2.7 \text{ to } 3.6 } 20 $ $ \frac{2.7 \text{ to } 3.6 } 20 $ $ \frac{2.7 \text{ to } 3.6 } 20 $ $ \frac{2.7 \text{ to } 3.6 } 20 $ $ \frac{2.7 \text{ to } 3.6 } 20 $ $ \frac{2.7 \text{ to } 3.6 } 75 $ $ \frac{2.7 \text{ to } 3.6 } 75 $ $ \frac{2.7 \text{ to } 3.6 } 75 $ $ \frac{2.7 \text{ to } 3.6 } 75 $ $ \frac{2.7 \text{ to } 3.6 } 75 $ $ \frac{2.7 \text{ to } 3.6 } 75 $ $ \frac{2.7 \text{ to } 3.6 } 75 $ $ \frac{2.7 \text{ to } 3.6 } 75 $ $ \frac{2.7 \text{ to } 3.6 } 75 $ $ \frac{2.7 \text{ to } 3.6 } 75 $ $ \frac{2.7 \text{ to } 3.6 } 75 $ $ \frac{2.7 \text{ to } 3.6 } 350 $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

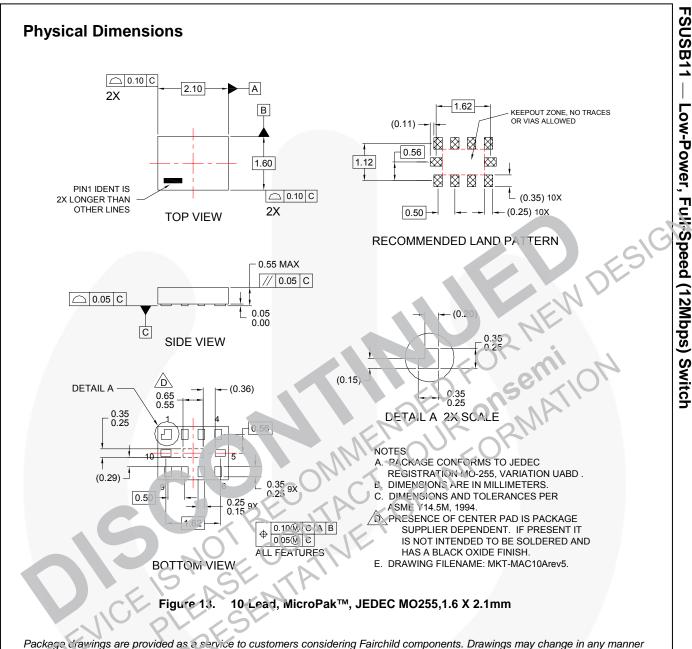
US P lated AC Electrical Characteristics

Unless otherwise specifieo, typical values are at 25°C.

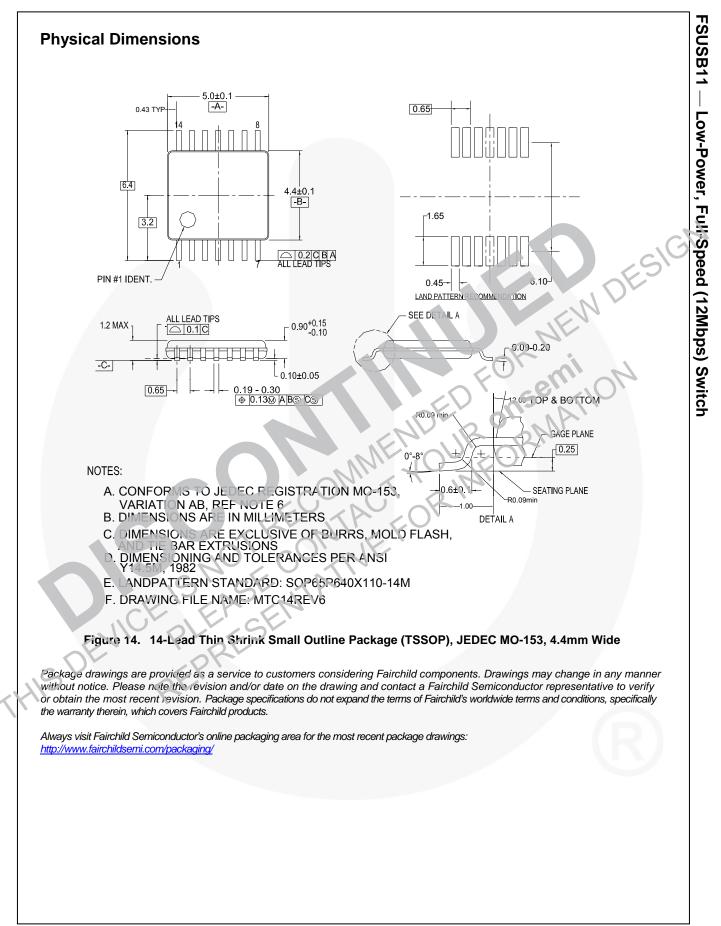

AC Electrical Characteristics

Symbol Parameter		Conditions		T _A =+25°C			Units	Figure
Symoc	Parameter	Conditions V _{cc} (V)		Min.	Тур.	Max.	Units	Figure
	Skew	R _S =39, C _L =50pF, t _R =t _F =12ns at 12Mbps	2.7 to 3.6		0.15		ns	Figure 11
ISK(O)	t _{SK(O)} Skew		4.5 to 5.5		0.15			
t	Rising/Fall Time	(Duty Cycle=50%)	2.7 to 3.6		30		ps	Figure 12
LSK(P)	t _{SK(P)} Mismatch		4.5 to 5.5		20			rigule 12
T Total litter		R _S =39, C _L =50pF, t _R =t _F =12ns at	2.7 to 3.6		1.7		20	Figure 40
T _J Total Jitter	Total Sitter	$R_{S}{=}39,$ $C_{L}{=}50pF,$ $t_{R}{=}t_{F}{=}12ns$ at 12Mbps (PRBS=2 15 1)	4.5 to 5.5		1.6		ps	Figure 12


Capacitance


	D			T _A =+25°C				_
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units	Figure
CIN	Control Pin Input Capacitance	f=1MHz	0.0		3.5		pF	Figure 9
C _{OFF}	D _n Port Off Capacitance	f=1MHz	4.5		12.0		pF	Figure 9
CON	D Port On Capacitance	f=1MHz	4.5		40.0		pF	Figure 9

FSUSB11 — Low-Power, Full-Speed (12Mbps) Switch


Package crawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which occers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

Tape and Reel Specification

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: <u>http://www.fairchildsemi.com/products/logic/pdf/micropak_tr.pdf</u>.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
L10X	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Obsolete

www.fairchildsemi.com

Rev. 143

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

OT RECONNERVOUR OR MENDE SENTATIVE FOR INFORMATION SENTATIVE FOR INFORMATION

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

NEW DESIGN