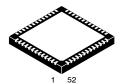


# 2.5 V/3.3 V 2:1:15 Differential ECL/PECL ÷1/÷2 Clock Driver

# NB100LVEP222

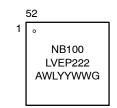
The NB100LVEP222 is a low skew 2:1:15 differential  $\pm 1/\pm 2$  ECL fanout buffer designed with clock distribution in mind. The LVECL/LVPECL input signal pairs can be used in a differential configuration or single–ended (with  $V_{BB}$  output reference bypassed and connected to the unused input of a pair). Either of two fully differential clock inputs may be selected. Each of the four output banks of 2, 3, 4, and 6 differential pairs may be independently configured to fanout 1X or 1/2X of the input frequency. When the output banks are configured with the  $\pm 1$  mode, data can also be distributed. The LVEP222 specifically guarantees low output to output skew. Optimal design, layout, and processing minimize skew within a device and from lot to lot. This device is an improved version of the MC100LVE222 with higher speed capability and reduced skew.

The fsel pins and CLK\_Sel pin are asynchronous control inputs. Any changes may cause indeterminate output states requiring an MR pulse to resynchronize any 1/2X outputs (See Figure 3). Unused output pairs should be left unterminated (open) to reduce power and switching noise.


The NB100LVEP222, as with most ECL devices, can be operated from a positive  $V_{\rm CC}/V_{\rm CC0}$  supply in LVPECL mode. This allows the LVEP222 to be used for high performance clock distribution in +2.5/3.3 V systems. In a PECL environment series or Thevenin line, terminations are typically used as they require no additional power supplies. For more information on using PECL, designers should refer to Application Note AN1406/D. For a SPICE model, refer to Application Note AN1560/D.

The  $V_{BB}$  pin, an internally generated voltage supply, is available to this device only. For single–ended LVPECL input conditions, the unused differential input is connected to  $V_{BB}$  as a switching reference voltage.  $V_{BB}$  may also rebias AC coupled inputs. When used, decouple  $V_{BB}$  and  $V_{CC}/V_{CC0}$  via a 0.01  $\mu F$  capacitor and limit current sourcing or sinking to 0.5 mA. When not used,  $V_{BB}$  should be left open. Single–ended CLK input operation is limited to a  $V_{CC}/V_{CC0} \ge 3.0~V$  in LVPECL mode, or  $V_{EE} \le -3.0~V$  in NECL mode.

### **Features**


- 20 ps Output-to-Output Skew
- 85 ps Part-to-Part Skew
- Selectable 1x or 1/2x Frequency Outputs
- LVPECL Mode Operating Range: V<sub>CC</sub>/V<sub>CC0</sub> = 2.375 V to 3.8 V with V<sub>EE</sub> = 0 V
- NECL Mode Operating Range:  $V_{CC}/V_{CC0} = 0$  V with  $V_{EE} = -2.375$  V to -3.8 V
- Internal Input Pulldown Resistors
- Performance Upgrade to ON Semiconductor's MC100LVE222
- V<sub>BB</sub> Output
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

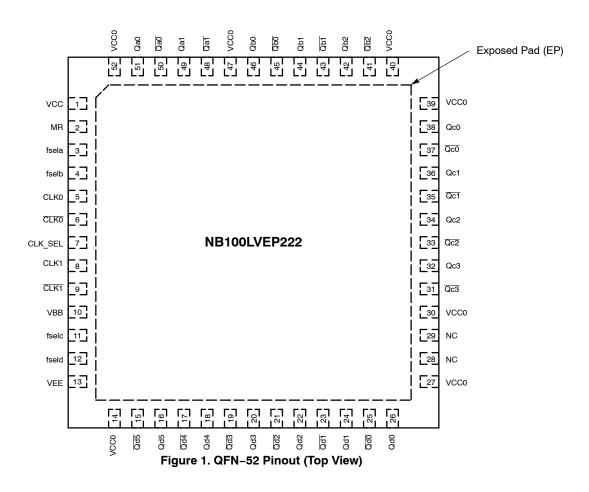
1



QFN-52 MN SUFFIX CASE 485M

### **MARKING DIAGRAM\***




A = Assembly Location

WL = Wafer Lot
 YY = Year
 WW = Work Week
 G = Pb-Free Package

\*For additional marking information, refer to Application Note <u>AND8002/D</u>.

### **ORDERING INFORMATION**

| Device          | Package             | Shipping            |
|-----------------|---------------------|---------------------|
| NB100LVEP222MNG | QFN-52<br>(Pb-Free) | 260 Units /<br>Tray |



**Table 1. PIN DESCRIPTION** 

| PIN                                | FUNCTION                                            |
|------------------------------------|-----------------------------------------------------|
| CLK0*, <u>CLK0</u> **              | ECL Differential Input Clock                        |
| CLK1*, CLK1**                      | ECL Differential Input Clock                        |
| CLK_Sel*                           | ECL Clock Select                                    |
| MR*                                | ECL Master Reset                                    |
| Qa0:1, Qa0:1                       | ECL Differential Outputs                            |
| Qb0:2, Qb0:2                       | ECL Differential Outputs                            |
| Qc0:3, Qc0:3                       | ECL Differential Outputs                            |
| Qd0:5, Qd0:5                       | ECL Differential Outputs                            |
| fseln*                             | ECL ÷1 or ÷2 Select                                 |
| $V_{BB}$                           | Reference Voltage Output                            |
| V <sub>CC</sub> , V <sub>CC0</sub> | Positive Supply, V <sub>CC</sub> = V <sub>CC0</sub> |
| V <sub>EE</sub> ***                | Negative Supply                                     |
| NC                                 | No Connect                                          |

\* Pins will default LOW when left open.

**Table 2. FUNCTION TABLE** 

|                        | Function             |                     |  |  |  |  |  |  |
|------------------------|----------------------|---------------------|--|--|--|--|--|--|
| Input                  | L                    | Н                   |  |  |  |  |  |  |
| MR<br>CLK_Sel<br>fseln | Active<br>CLK0<br>÷1 | Reset<br>CLK1<br>÷2 |  |  |  |  |  |  |

<sup>\*\*</sup> Pins will default HIGH when left open.

 $<sup>^{\</sup>star\star\star}$  The thermally conductive exposed pad on the bottom of the package is electrically connected to  $V_{EE}$  internally.

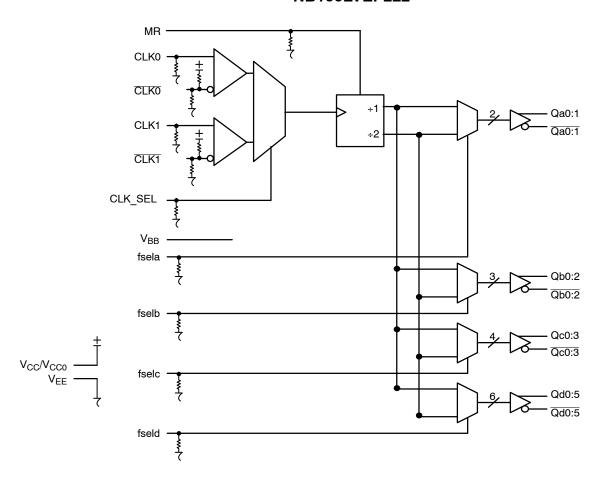



Figure 2. Logic Diagram

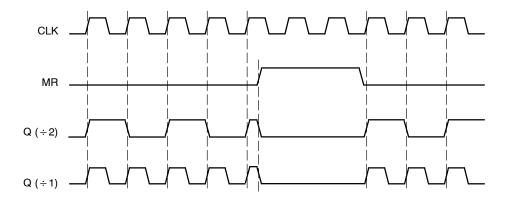



Figure 3. Master Reset (MR) Timing Diagram

### **Table 3. ATTRIBUTES**

| Characteristics                                                    | Value                       |
|--------------------------------------------------------------------|-----------------------------|
| Internal Input Pulldown Resistor                                   | 75 kΩ                       |
| Internal Input Pullup Resistor                                     | 37.5 kΩ                     |
| ESD Protection Human Body Model Machine Model Charged Device Model | > 2 kV<br>> 200 V<br>> 2 kV |
| Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)      | Pb-Free Pkg                 |
| QFN-52                                                             | Level 2                     |
| Flammability Rating Oxygen Index: 28 to 34                         | UL 94 V-O @ 0.125 in        |
| Transistor Count                                                   | 821 Devices                 |
| Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test             | <u> </u>                    |

<sup>1.</sup> For additional information, refer to Application Note AND8003/D.

### **Table 4. MAXIMUM RATINGS**

| Symbol                            | Parameter                                          | Condition 1                                                      | Condition 2                                        | Rating            | Unit         |
|-----------------------------------|----------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|-------------------|--------------|
| V <sub>CC</sub> /V <sub>CC0</sub> | PECL Mode Power Supply                             | V <sub>EE</sub> = 0 V                                            |                                                    | 6                 | V            |
| V <sub>EE</sub>                   | NECL Mode Power Supply                             | $V_{CC}/V_{CC0} = 0 V$                                           |                                                    | -6                | V            |
| V <sub>I</sub>                    | PECL Mode Input Voltage<br>NECL Mode Input Voltage | V <sub>EE</sub> = 0 V<br>V <sub>CC</sub> /V <sub>CC0</sub> = 0 V | $V_{l} \leq V_{CC}/V_{CC0}$<br>$V_{l} \geq V_{EE}$ | 6 to 0<br>-6 to 0 | V<br>V       |
| l <sub>out</sub>                  | Output Current                                     | Continuous<br>Surge                                              |                                                    | 50<br>100         | mA<br>mA     |
| I <sub>BB</sub>                   | V <sub>BB</sub> Sink/Source                        |                                                                  |                                                    | ±0.5              | mA           |
| T <sub>A</sub>                    | Operating Temperature Range                        |                                                                  |                                                    | -40 to +85        | °C           |
| T <sub>stg</sub>                  | Storage Temperature Range                          |                                                                  |                                                    | −65 to +150       | °C           |
| θЈА                               | Thermal Resistance (Junction-to-Ambient) (Note )   | 0 lfpm<br>500 lfpm                                               | QFN-52<br>QFN-52                                   | 25<br>19.6        | °C/W<br>°C/W |
| θJC                               | Thermal Resistance (Junction-to-Case) (Note )      | 2S2P                                                             | QFN-52                                             | 21                | °C/W         |
| T <sub>sol</sub>                  | Wave Solder                                        | < 2 to 3 sec @ 248°C                                             |                                                    | 265               | °C           |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 5. LVPECL DC CHARACTERISTICS V<sub>CC</sub> = V<sub>CC0</sub> = 2.5 V; V<sub>EE</sub> = 0 V (Note 2)

|                    |                                                                                             |             | -40°C |      |             | 25°C |      |             | 85°C |      |      |
|--------------------|---------------------------------------------------------------------------------------------|-------------|-------|------|-------------|------|------|-------------|------|------|------|
| Symbol             | Characteristic                                                                              | Min         | Тур   | Max  | Min         | Тур  | Max  | Min         | Тур  | Max  | Unit |
| I <sub>EE</sub>    | Power Supply Current                                                                        | 100         | 125   | 150  | 104         | 130  | 156  | 112         | 140  | 168  | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 3)                                                                | 1355        | 1480  | 1605 | 1355        | 1480 | 1605 | 1355        | 1480 | 1605 | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 3)                                                                 | 555         | 680   | 900  | 555         | 680  | 900  | 555         | 680  | 900  | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage (Single-Ended) (Note 4)                                                  | 1335        |       | 1620 | 1335        |      | 1620 | 1275        |      | 1620 | mV   |
| V <sub>IL</sub>    | Input LOW Voltage (Single-Ended)<br>(Note 4)                                                | 555         |       | 900  | 555         |      | 900  | 555         |      | 900  | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 5) (Figure 5) | 1.2         |       | 2.5  | 1.2         |      | 2.5  | 1.2         |      | 2.5  | V    |
| I <sub>IH</sub>    | Input HIGH Current                                                                          |             |       | 150  |             |      | 150  |             |      | 150  | μΑ   |
| I <sub>IL</sub>    | Input LOW Current CLK<br>CLK                                                                | 0.5<br>-150 |       |      | 0.5<br>-150 |      |      | 0.5<br>-150 |      |      | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 2. Input and output parameters vary 1:1 with  $V_{CC}/V_{CC0}$ .  $V_{EE}$  can vary + 0.125 V to –1.3 V.

- All loading with 50 Ω to V<sub>CC</sub>/V<sub>CC0</sub> 2.0 V.
   Do not use V<sub>BB</sub> Pin #10 at V<sub>CC</sub>/V<sub>CC0</sub> < 3.0 V (see <u>AND8066/D</u>).
   V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>/V<sub>CC0</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

Table 6. LVPECL DC CHARACTERISTICS  $V_{CC} = V_{CC0} = 3.3 \text{ V}; V_{EE} = 0.0 \text{ V}$  (Note 6)

|                    |                                                                                             |             | -40°C | -40°C 25°C |             |      |      |             |      |      |      |
|--------------------|---------------------------------------------------------------------------------------------|-------------|-------|------------|-------------|------|------|-------------|------|------|------|
| Symbol             | Characteristic                                                                              | Min         | Тур   | Max        | Min         | Тур  | Max  | Min         | Тур  | Max  | Unit |
| I <sub>EE</sub>    | Power Supply Current                                                                        | 100         | 125   | 150        | 104         | 130  | 156  | 112         | 140  | 168  | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 7)                                                                | 2155        | 2280  | 2405       | 2155        | 2280 | 2405 | 2155        | 2280 | 2405 | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 7)                                                                 | 1355        | 1480  | 1700       | 1355        | 1480 | 1700 | 1355        | 1480 | 1700 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage (Single-Ended)                                                           | 2135        |       | 2420       | 2135        |      | 2420 | 2135        |      | 2420 | mV   |
| V <sub>IL</sub>    | Input LOW Voltage (Single-Ended)                                                            | 1355        |       | 1700       | 1355        |      | 1700 | 1355        |      | 1700 | mV   |
| V <sub>BB</sub>    | Output Reference Voltage (Note 8)                                                           | 1775        | 1875  | 1975       | 1775        | 1875 | 1975 | 1775        | 1875 | 1975 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 9) (Figure 5) | 1.2         |       | 3.3        | 1.2         |      | 3.3  | 1.2         |      | 3.3  | V    |
| I <sub>IH</sub>    | Input HIGH Current                                                                          |             |       | 150        |             |      | 150  |             |      | 150  | μΑ   |
| I <sub>IL</sub>    | Input LOW Current CLK<br>CLK                                                                | 0.5<br>-150 |       |            | 0.5<br>-150 |      |      | 0.5<br>-150 |      |      | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 6. Input and output parameters vary 1:1 with  $V_{CC}/V_{CC0}$ .  $V_{EE}$  can vary + 0.925 V to -0.5 V.
- 7. All loading with 50  $\Omega$  to  $V_{CC}/V_{CC0}$ -2.0 V.
- 8. Single–Ended input operation is limited  $V_{CC}/V_{CC0} \ge 3.0 \text{ V}$  in LVPECL mode.
- 9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC/VCC0. The VIHCMR range is referenced to the most positive side of the differential input signal.

Table 7. LVNECL DC CHARACTERISTICS  $V_{CC} = V_{CC0} = 0.0 \text{ V}$ ;  $V_{EE} = -3.8 \text{ V}$  to -2.375 V (Note 10)

|                    |                                                                                              | −40°C           |       |       | 25°C            |       |       |                 |       |       |      |
|--------------------|----------------------------------------------------------------------------------------------|-----------------|-------|-------|-----------------|-------|-------|-----------------|-------|-------|------|
| Symbol             | Characteristic                                                                               | Min             | Тур   | Max   | Min             | Тур   | Max   | Min             | Тур   | Max   | Unit |
| I <sub>EE</sub>    | Power Supply Current                                                                         | 100             | 125   | 150   | 104             | 130   | 156   | 112             | 140   | 168   | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 11)                                                                | -1145           | -1020 | -895  | -1145           | -1020 | -895  | -1145           | -1020 | -895  | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 11)                                                                 | -1945           | -1820 | -1600 | -1945           | -1820 | -1600 | -1945           | -1820 | -1600 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage (Single-Ended)                                                            | -1165           |       | -880  | -1165           |       | -880  | -1165           |       | -880  | mV   |
| V <sub>IL</sub>    | Input LOW Voltage (Single-Ended)                                                             | -1945           |       | -1600 | -1945           |       | -1600 | -1945           |       | -1600 | mV   |
| $V_{BB}$           | Output Reference Voltage (Note 12)                                                           | -1525           | -1425 | -1325 | -1525           | -1425 | -1325 | -1525           | -1425 | -1325 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 13) (Figure 5) | V <sub>EE</sub> | + 1.2 | 0.0   | V <sub>EE</sub> | + 1.2 | 0.0   | V <sub>EE</sub> | + 1.2 | 0.0   | V    |
| I <sub>IH</sub>    | Input HIGH Current                                                                           |                 |       | 150   |                 |       | 150   |                 |       | 150   | μΑ   |
| I <sub>IL</sub>    | Input LOW Current CLK<br>CLK                                                                 | 0.5<br>-150     |       |       | 0.5<br>-150     |       |       | 0.5<br>-150     |       |       | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

<sup>10.</sup> Input and output parameters vary 1:1 with  $V_{CC}/V_{CC0}$ .

<sup>11.</sup> All loading with 50 Ω to V<sub>CC</sub>/V<sub>CC0</sub> − 2.0 V.
12. Single–Ended input operation is limited V<sub>EE</sub> ≤ −3.0 V in NECL mode.
13. V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>/V<sub>CC0</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

**Table 8. AC CHARACTERISTICS**  $V_{CC} = V_{CC0} = 2.375$  to 3.8 V;  $V_{EE} = 0.0$  V or  $V_{CC} = V_{CC0} = 0.0$  V;  $V_{EE} = -2.375$  to -3.8 V (Note 14)

|                                      |                                                                                                                                                              | −40°C             |                            | 25°C                             |                   |                      |                                  |                   |                            |                            |      |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|----------------------------------|-------------------|----------------------|----------------------------------|-------------------|----------------------------|----------------------------|------|
| Symbol                               | Characteristic                                                                                                                                               | Min               | Тур                        | Max                              | Min               | Тур                  | Max                              | Min               | Тур                        | Max                        | Unit |
| V <sub>Opp</sub>                     | Differential Output Voltage<br>(Figure 4) f <sub>out</sub> = 50 MHz<br>f <sub>out</sub> = 0.8 GHz<br>f <sub>out</sub> = 1.0 GHz                              | 500<br>550<br>500 | 600<br>650<br>650          |                                  | 500<br>525<br>425 | 600<br>650<br>650    |                                  | 500<br>500<br>400 | 600<br>650<br>600          |                            | mV   |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay (Differential Configuration) $ \begin{array}{c} \text{CLKx-Q}_X \\ \text{MR-Q}_{XX} \end{array} $                                          | 650<br>700        | 800<br>900                 | 900<br>1200                      | 700<br>700        | 875<br>900           | 1000<br>1200                     | 850<br>700        | 975<br>900                 | 1150<br>1200               | ps   |
| t <sub>skew</sub>                    | Within-Device Skew (Note 15) (+1 Mode) - Qa[0:1] - Qb[0:2] - Qc[0:3] - Qd[0:5] - Qa <sub>N</sub> , Qb <sub>N</sub> , Qd <sub>N</sub> - All Outputs           |                   | 10<br>10<br>20<br>10       | 40<br>40<br>60<br>40<br>40       |                   | 10<br>10<br>20<br>10 | 40<br>40<br>60<br>40<br>40       |                   | 10<br>10<br>20<br>10       | 40<br>40<br>60<br>40<br>40 | ps   |
| <sup>t</sup> skew                    | Within-Device Skew (Note 15) (+2 Mode) - Qa[0:1] - Qb[0:2] - Qc[0:3] - Qd[0:5] - Qd[0:5] - Qa <sub>N</sub> , Qb <sub>N</sub> , Qd <sub>N</sub> - All Outputs |                   | 15<br>15<br>20<br>15<br>15 | 70<br>70<br>70<br>70<br>70<br>70 |                   | 10<br>10<br>20<br>10 | 40<br>40<br>50<br>40<br>40<br>50 |                   | 15<br>10<br>15<br>15<br>15 | 70<br>40<br>70<br>70<br>70 | ps   |
| t <sub>skew</sub>                    | Device-to-Device Skew (Differential Configuration) (Note 16)                                                                                                 |                   | 85                         | 300                              |                   | 85                   | 300                              |                   | 85                         | 300                        | ps   |
| t <sub>JITTER</sub>                  | Random Clock Jitter (Figure 4) (RMS)                                                                                                                         |                   | 1                          | 5                                |                   | 1                    | 4                                |                   | 1                          | 5                          | ps   |
| V <sub>PP</sub>                      | Input Swing (Differential Configuration) (Note 17) (Figure 5)                                                                                                | 150               | 800                        | 1200                             | 150               | 800                  | 1200                             | 150               | 800                        | 1200                       | mV   |
| DCO                                  | Output Duty Cycle                                                                                                                                            | 49.5              | 50                         | 50.5                             | 49.5              | 50                   | 50.5                             | 49.5              | 50                         | 50.5                       | %    |
| t <sub>r</sub> /t <sub>f</sub>       | Output Rise/Fall Time 20%-80%                                                                                                                                | 100               | 200                        | 300                              | 100               | 200                  | 300                              | 150               | 250                        | 350                        | ps   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

<sup>14.</sup> Measured with LVPECL 750 mV source, 50% duty cycle clock source. All outputs loaded with 50  $\Omega$  to  $V_{CC}/V_{CC0}$  – 2.0 V.

<sup>15.</sup> Skew is measured between outputs under identical transitions and operating conditions.

<sup>16.</sup> Device-to-Device skew for identical transitions at identical V<sub>CC</sub>/V<sub>CC0</sub> levels.

17. V<sub>PP</sub> is the differential configuration input voltage swing required to maintain AC characteristics including t<sub>PD</sub> and device-to-device skew.

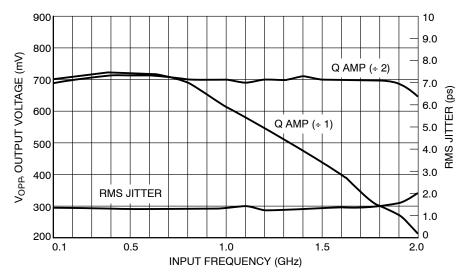



Figure 4. Output Voltage (V<sub>OPP</sub>) versus Input Frequency and Random Clock Jitter (t<sub>JITTER</sub>) @ 25°C

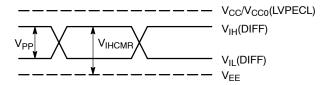



Figure 5. LVPECL Differential Input Levels

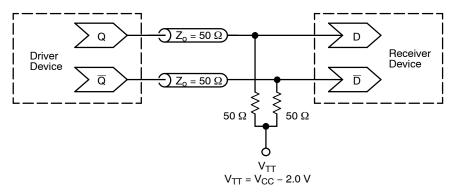



Figure 6. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.)

### **Resource Reference of Application Notes**

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

AN1504/D - Metastability and the ECLinPS Family

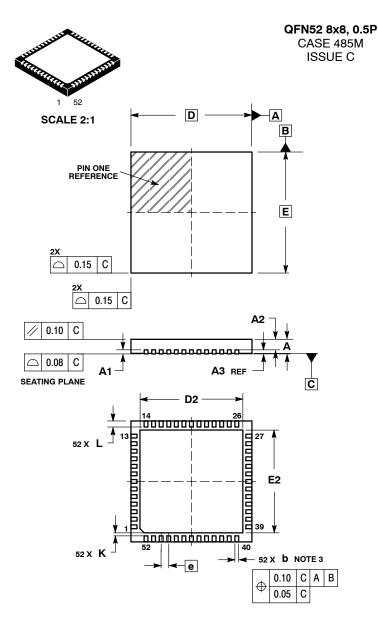
AN1568/D - Interfacing Between LVDS and ECL

AND8001/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices


AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

ECLinPS is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

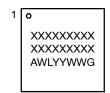






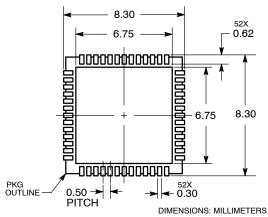
**DATE 16 FEB 2010** 

- NOTES:


  1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

  2. CONTROLLING DIMENSION: MILLIMETERS

  3. DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.


|     | MILLIMETERS |      |  |  |  |  |  |  |  |  |
|-----|-------------|------|--|--|--|--|--|--|--|--|
| DIM | MIN         | MAX  |  |  |  |  |  |  |  |  |
| Α   | 0.80        | 1.00 |  |  |  |  |  |  |  |  |
| A1  | 0.00        | 0.05 |  |  |  |  |  |  |  |  |
| A2  | 0.60        | 0.80 |  |  |  |  |  |  |  |  |
| A3  | 0.20        | REF  |  |  |  |  |  |  |  |  |
| b   | 0.18        | 0.30 |  |  |  |  |  |  |  |  |
| D   | 8.00        | BSC  |  |  |  |  |  |  |  |  |
| D2  | 6.50        | 6.80 |  |  |  |  |  |  |  |  |
| Е   | 8.00        | BSC  |  |  |  |  |  |  |  |  |
| E2  | 6.50        | 6.80 |  |  |  |  |  |  |  |  |
| е   | 0.50        | BSC  |  |  |  |  |  |  |  |  |
| K   | 0.20        |      |  |  |  |  |  |  |  |  |
| L   | 0.30        | 0.50 |  |  |  |  |  |  |  |  |

### **GENERIC MARKING DIAGRAM**



XXXXXXXXX = Device Code = Assembly Site = Wafer Lot WL YY = Year WW = Work Week G = Pb-Free Package

### **RECOMMENDED SOLDERING FOOTPRINT**



| DOCUMENT NUMBER: | 98AON12057D           | Electronic versions are uncontrolled except when accessed directly from the Document Rep<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |  |  |
|------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| DESCRIPTION:     | 52 PIN QFN, 8X8, 0.5P |                                                                                                                                                                             | PAGE 1 OF 1 |  |  |  |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked to demonstrate the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales