<u>onsemi.</u>

2.5V / 3.3V 1:5 Differential ECL/PECL/HSTL Clock Driver MC100LVEP14

Description

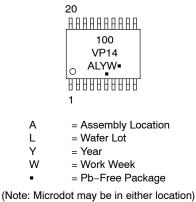
The MC100LVEP14 is a low skew 1–to–5 differential driver, designed with clock distribution in mind, accepting two clock sources into an input multiplexer. The ECL/PECL input signals can be either differential or single–ended (if the $V_{\rm BB}$ output is used). HSTL inputs can be used when the LVEP14 is operating under PECL conditions.

The LVEP14 specifically guarantees low output-to-output skew. Optimal design, layout, and processing minimize skew within a device and from device to device.

To ensure that the tight skew specification is realized, both sides of any differential output need to be terminated identically into 50 Ω even if only one output is being used. If an output pair is unused, both outputs may be left open (unterminated) without affecting skew.

The common enable (\overline{EN}) is synchronous, outputs are enabled/ disabled in the LOW state. This avoids a runt clock pulse when the device is enabled/disabled as can happen with an asynchronous control. The internal flip flop is clocked on the falling edge of the input clock; therefore, all associated specification limits are referenced to the negative edge of the clock input.

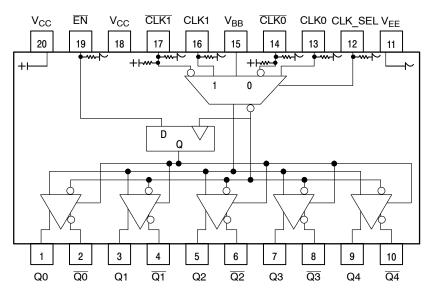
The MC100LVEP14, as with most other ECL devices, can be operated from a positive V_{CC} supply in PECL mode. This allows the LVEP14 to be used for high performance clock distribution in +3.3 V or +2.5 V systems. Single-ended CLK input pin operation is limited to a $V_{CC} \ge 3.0$ V in PECL mode, or $V_{EE} \le -3.0$ V in NECL mode. Designers can take advantage of the LVEP14's performance to distribute low skew clocks across the backplane or the board.


Features

- 100 ps Device-to-Device Skew
- 25 ps Within Device Skew
- 400 ps Typical Propagation Delay
- Maximum Frequency > 2 GHz Typical
- The 100 Series Contains Temperature Compensation
- PECL and HSTL Mode: $V_{CC} = 2.375 \text{ V}$ to 3.8 V with $V_{EE} = 0 \text{ V}$
- NECL Mode:
 V_{CC} = 0 V with V_{EE} = -2.375 V to -3.8 V
- LVDS Input Compatible
- Open Input Default State
- These Devices are Pb-Free and are RoHS Compliant

TSSOP-20 DT SUFFIX CASE 948E

MARKING DIAGRAM



*For additional marking information, refer to

Application Note <u>AND8002/D</u>. ORDERING INFORMATION

Device	Package	Shipping†
MC100LVEP14DTG	TSSOP-20 (Pb-Free)	75 Units / Tube
MC100LVEP14DTR2G	TSSOP-20 (Pb-Free)	2500 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 20-Lead Pinout (Top View) and Logic Diagram

Table	1.	PIN	DESCRIPTION	
Iable			DESCRIF HOR	

Pin	Туре	Function
CLK0*, CLK0**	LVECL/LVPECL/ HSTL	ECL/PECL/HSTL CLK Input
CLK1*, CLK1**	LVECL/LVPECL/ HSTL	ECL/PECL/HSTL CLK Input
Q0:4, Q0:4	LVECL/LVPECL	ECL/PECL Outputs
CLK_SEL*	LVECL/LVPECL	ECL/PECL Active Clock Se- lect Input
EN*	LVECL/LVPECL	ECL Sync Enable
V _{BB}	LVECL/LVPECL	Reference Voltage Output
V _{CC}		Positive Supply
V _{EE}		Negative Supply

Table 2. FUNCTION TABLE

CLK0	CLK1	CLK_SEL	EN	Q
L H X X X	X X L H X	ГГНХ		Т Т Т Т Г

*On next negative transition of CLK0 or CLK1

* Pins will default low when left open. **Pins will default to V_{CC}/2 when left open.

Table 3. ATTRIBUTES

Characterist	Va	lue								
Internal Input Pulldown Resistor	75 kΩ									
Internal Input Pullup Resistor	37.5	5 kΩ								
ESD Protection	> 1(2 kV 20 V 2 kV								
Moisture Sensitivity, Indefinite Time	Out of Drypack (Note 1)	Pb Pkg	Pb-Free Pkg							
	TSSOP-20	Level 1	Level 1							
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0	@ 0.125 in							
Transistor Count	357 D	evices								
Meets or exceeds JEDEC Spec EIA	Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test									

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_{I}\!\leq\!V_{CC} \\ V_{I}\!\geq\!V_{EE} \end{array}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm			°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-20	23 to 41	°C/W
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 5. 100LVEP DC CHARACTERISTICS, PECL V_{CC} = 2.5 V, V_{EE} = 0 V (Note 2)

		-40°C				25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	45	60	75	45	60	75	45	60	75	mA
V _{OH}	Output HIGH Voltage (Note 3)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{OL}	Output LOW Voltage (Note 3)	505	730	900	505	730	900	505	730	900	mV
VIH	Input HIGH Voltage (Single-Ended) (Note 4)	1335		1620	1335		1620	1275		1620	mV
V _{IL}	Input LOW Voltage (Single-Ended) (Note 4)	505		900	505		900	505		900	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5)	1.2		2.5	1.2		2.5	1.2		2.5	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

2. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.125 V to -1.3 V. 3. All loading with 50 Ω to V_{CC} - 2.0 V. 4. Do not use V_{BB} at V_{CC} < 3.0 V. 5. V_{HCMR} min varies 1:1 with V_{EE}, V_{HCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential invariant varies 1:1 with V_{EE}, V_{HCMR} max varies 1:1 with V_{CC}. input signal.

			−40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I_{EE}	Power Supply Current	45	60	75	45	60	75	45	60	75	mA
V _{OH}	Output HIGH Voltage (Note 7)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 7)	1305	1530	1700	1305	1530	1700	1305	1530	1700	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	2135		2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage (Single-Ended)	1305		1700	1305		1700	1305		1700	mV
V _{BB}	Output Reference Voltage (Note 8)	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 9)	1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μA
I _{IL}	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150			μA

Table 6. 100LVEP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 6)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

6. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.925 V to –0.5 V.

7. All loading with 50 Ω to V_{CC} – 2.0 V. 8. Single–ended input operation is limited to V_{CC} \geq 3.0 V in PECL mode.

9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

		–40°C				25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	45	60	75	45	60	75	45	60	75	mA
V _{OH}	Output HIGH Voltage (Note 11)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 11)	-1995	-1770	-1600	-1995	-1770	-1600	-1995	-1770	-1600	mV
VIH	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
VIL	Input LOW Voltage (Single-Ended)	-1995		-1600	-1995		-1600	-1995		-1600	mV
V _{BB}	Output Reference Voltage (Note 12)	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13)	V _{EE}	+ 1.2	0.0	V _{EE}	+ 1.2	0.0	V _{EE}	+ 1.2	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current CLK	0.5 -150			0.5 -150			0.5 -150			μΑ

Table 7. 100LVEP DC CHARACTERISTICS, NECL V_{CC} = 0 V, V_{EE} = -3.8 V to -2.375 V (Note 10)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

10. Input and output parameters vary 1:1 with V_{CC} .

11. All loading with 50 Ω to V_{CC} – 2.0 V.

12. Single–ended input operation is limited to $V_{EE} \leq 3.0$ V in NECL mode.

13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

		–40°C				25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
VIH	Input HIGH Voltage	1200			1200			1200			mV
VIL	Input LOW Voltage			400			400			400	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

			–40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OUTPP}	Output Voltage Amplitude @ 2.5 GHz (Figure 2)	330	425		280	375		230	295		mV
t _{PLH} t _{PHL}	Propagation Delay to Output Differential	300	375	425	300	400	475	300	430	525	ps
t _{skew}	Within-Device Skew (Note 15) Device-to-Device Skew (Note 15)		10 100	25 125		15 150	25 175		15 200	25 225	ps
t _s t _h	Setup TimeENHold TimeEN	100 200	50 140		100 200	50 140		100 200	50 140		ps
t _{JITTER}	CLOCK Random Jitter (RMS) $@ \leq 1.0 \text{ GHz}$ $@ \leq 1.5 \text{ GHz}$ $@ \leq 2.0 \text{ GHz}$ $@ \leq 2.5 \text{ GHz}$		0.157 0.163 0.180 0.179	0.3 0.2 0.3 0.3		0.181 0.176 0.201 0.208	0.3 0.3 0.3 0.3		0.212 0.218 0.235 0.253	0.3 0.3 0.3 0.4	ps
V _{PP}	Minimum Input Swing	150	800	1200	150	800	1200	150	800	1200	mV
t _r /t _f	Output Rise/Fall Time (20%-80%)	125	165	225	125	180	250	125	200	275	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

14. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V.

15. Skew is measured between outputs under identical transitions.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	_	Designing with PECL (ECL at +5.0 V)
AN1503/D	_	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	_	Metastability and the ECLinPS Family
AN1568/D	_	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	_	AC Characteristics of ECL Devices

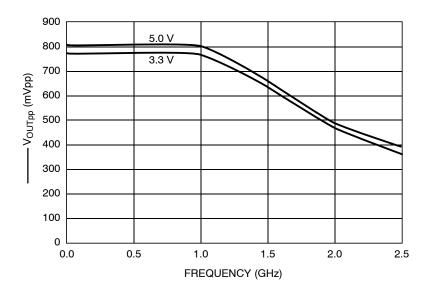


Figure 2. Typical V_{OUTPP} (mVpp) versus Frequency (GHz) @ 25°C

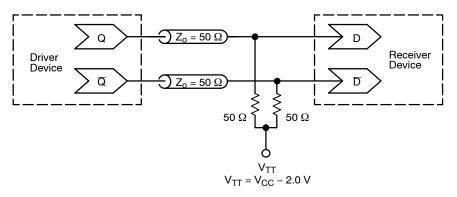
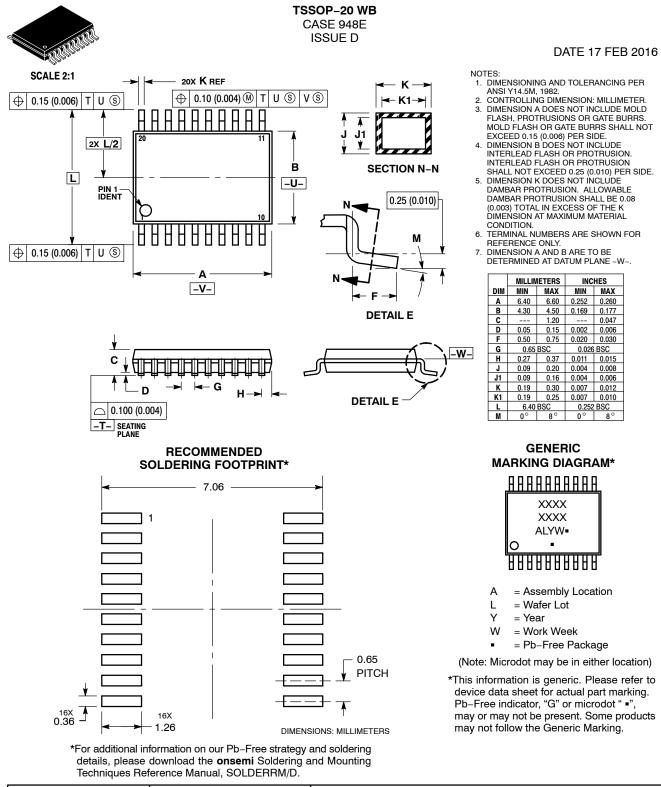



Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ECLinPS is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

DOCUMENT NUMBER:	98ASH70169A	the Document Repository. O COPY" in red.	
DESCRIPTION:	TSSOP-20 WB		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>