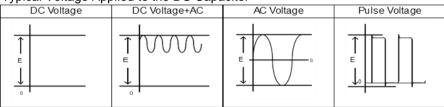
<u>uRata</u>	
	Reference Specification
S	Safety Standard Certified Lead Type Disc Ceramic Capacitors for Consumer Electronics & Industrial Equipment /Type SA
	ifications in this catalog are as of May. 2024, and are subject to change or e without notice.
	It the approval sheet before ordering.Please read rating and Cautions first.

Please refer to the product information page for more information on ceramic capacitors.→ Ceramic capacitor product information Various data can be obtained directly from the product search. \rightarrow <u>Product search (SMD)</u> / <u>Product search (Lead Type)</u>


1. OPERATING VOLTAGE

Do not apply a voltage to a safety standard certified product that exceeds the rated voltage as called out in the specifications. Applied voltage between the terminals of a safety standard certified product shall be less than or equal to the rated voltage (+10 %). When a safety standard certified product is used as a DC voltage product, the AC rated voltage value becomes the DC rated voltage value.

(Example:AC250 V (r.m.s.) rated product can be used as DC250 V (+10 %) rated product.) If both AC rated voltage and DC rated voltage are specified, apply the voltage lower than the respective rated voltage.

- 1-1. When a safety standard certified product is used in a circuit connected to a commercial power supply, ensure that the applied commercial power supply voltage including fluctuation should be less than 10 % above its rated voltage.
- 1-2. When using a safety standard certified product as a DC rated product in circuits other than those connected to a commercial power supply.

When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage. When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage.

Typical Voltage Applied to the DC Capacitor

(E: Maximum possible applied voltage.)

1-3. Influence of over voltage

Over voltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the internal dielectric layers. The time duration until breakdown depends on the applied voltage and the ambient temperature.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss.

In case of Class 2 capacitors (Temp.Char. : B,E,F, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on <u>the condition of atmosphere temperature 25 °C.</u>

Since the self-heating is low in the Class 1 capacitors (Temp.Char.: SL etc.), the allowable power becomes extremely high compared to the Class 2 capacitors.

However, when a load with self-heating of 20 °C is applied at the rated voltage, the allowable power may be exceeded. Please confirm that there is no rising trend of the capacitor's surface temperature and that the surface temperature of the capacitor does not exceed the maximum operating temperature.

Excessive generation of heat may cause deterioration of the characteristics and reliability of the capacitor.

When measuring the self-heating temperature, be aware that accurate measurement may not be possible due to the following effects.

- The heat generated by other parts
- Air flow such as convection and cooling fans
- Temperature sensor used for measuring surface temperature of capacitor In the case using a thermocouple, it is recommended that use a K thermocouple of ^Q
- In the case using a thermocouple, it is recommended that use a K thermocouple of Φ 0.1 mm with less heat capacity.

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

3-1. TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

3-2. VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise,

and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0 V.

- See the right figure -

4. FAIL-SAFE

Capacitors that are cracked by dropping or bending of the board may cause deterioration of the insulation resistance, and result in a short.

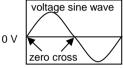
If the circuit being used may cause an electrical shock, smoke or fire when a capacitor is shorted, be sure to install fail-safe functions, such as a fuse, to prevent secondary accidents.

5. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85 %.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

6. VIBRATION AND IMPACT

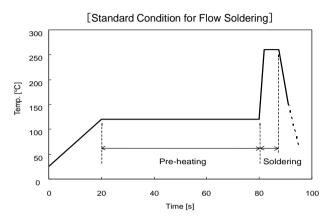

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6-1. Mechanical shock due to being dropped may cause damage or a crack in the dielectric material of the capacitor.

Do not use a dropped capacitor because the quality and reliability may be deteriorated.

6-2. Excessive shock or vibration may cause to fatigue destruction of lead wires mounted on the circuit board. If necessary, take measures to hold a capacitor on the circuit boards by adhesive, molding resin or coating and other.

Please confirm there is no influence of holding measures on the product with an intended equipment.


7. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

Please verify that the soldering process does not affect the quality of capacitors.

7-1. Flow Soldering

Soldering temperature: 260 °C max.Soldering time: 7.5 s max.Preheating temperature: 120 °C max.Preheating time: 60 s max.

- 7-2. Reflow Soldering Do not apply reflow soldering.
- 7-3. Soldering Iron

Temperature of iron-tip: 400 °C max.Soldering iron wattage: 50 W max.Soldering time: 3.5 s max.

8. BONDING, RESIN MOLDING AND COATING

Before bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

9. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

10. LIMITATION OF APPLICATIONS

The products listed in the specification(hereinafter the product(s) is called as the "Product(s)") are designed and manufactured for applications specified in the specification. (hereinafter called as the "Specific Application")

We shall not warrant anything in connection with the Products including fitness, performance, adequateness, safety, or quality, in the case of applications listed in from (1) to (11) written at the end of this precautions, which may generally require high performance, function, quality, management of production or safety.

Therefore, the Product shall be applied in compliance with the specific application.

WE DISCLAIM ANY LOSS AND DAMAGES ARISING FROM OR IN CONNECTION WITH THE PRODUCTS INCLUDING BUT NOT LIMITED TO THE CASE SUCH LOSS AND DAMAGES CAUSED BY THE UNEXPECTED ACCIDENT, IN EVENT THAT (i) THE PRODUCT IS APPLIED FOR THE PURPOSE WHICH IS NOT SPECIFIED AS THE SPECIFIC APPLICATION FOR THE PRODUCT, AND/OR (ii) THE PRODUCT IS APPLIED FOR ANY FOLLOWING APPLICATION PURPOSES FROM (1) TO (11) (EXCEPT THAT SUCH APPLICATION PURPOSE IS UNAMBIGUOUSLY SPECIFIED AS SPECIFIC APPLICATION FOR THE PRODUCT IN OUR CATALOG SPECIFICATION FORMS, DATASHEETS, OR OTHER DOCUMENTS OFFICIALLY ISSUED BY US*)

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment
- 7. Traffic control equipment
- 8. Disaster prevention/security equipment
- 9. Industrial data-processing equipment
- 10. Combustion/explosion control equipment
- 11. Equipment with complexity and/or required reliability equivalent to the applications listed in the above.

For exploring information of the Products which will be compatible with the particular purpose other than those specified in the specification, please contact our sales offices, distribution agents, or trading companies with which you make a deal, or via our web contact form.

Contact form: https://www.murata.com/contactform

*We may design and manufacture particular Products for applications listed in (1) to (11). Provided that, in such case we shall unambiguously specify such Specific Application in the specification without any exception.

Therefore, any other documents and/or performances, whether exist or non-exist, shall not be deemed as the evidence to imply that we accept the applications listed in (1) to (11).

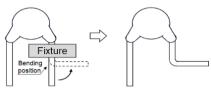
NOTICE

1. CLEANING (ULTRASONIC CLEANING)

- 1-1. Please evaluate the capacitor using actual cleaning equipment and conditions to confirm the quality, and select the solvent for cleaning.
- 1-2. Unsuitable cleaning may leave residual flux or other foreign substances, causing deterioration of electrical characteristics and the reliability of the capacitors.
- 1-3. To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity : Output of 20 watts per liter or less.

Rinsing time : 5 min maximum.


Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the terminals.

2. SOLDERING AND MOUNTING

- 2-1. Insert the lead wire into the PCB with a distance appropriate to the lead space. If the lead wires are inserted into different spacing holes, cracks may occur in the outer resin or the internal element.
- 2-2. When bending the lead wire, excessive force applied to the capacitor body may cause cracks in the outer resin or the internal element. Hold the lead wire closer to the capacitor body than the lead wire bending position with the fixture, then bend it.

(See the right figure)

2-3. When cutting and clinching the lead wire, do not apply excessive force to the capacitor body.

2-4. When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.

3. CAPACITANCE CHANGE OF CAPACITORS

Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

Class 2 capacitors

Class 2 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit. Please contact us if you need a detail information.

4. CHARACTERISTICS EVALUATION IN THE ACTUAL SYSTEM

- 4-1. Evaluate the capacitor in the actual system, to confirm that there is no problem with the performance and specification values in a finished product before using.
- 4-2. Since a voltage dependency and temperature dependency exists in the capacitance of Class 2 ceramic capacitors, the capacitance may change depending on the operating conditions in the actual system. Therefore, be sure to evaluate the various characteristics, such as the leakage current and noise absorptivity, which will affect the capacitance value of the capacitor.
- 4-3. In addition, voltages exceeding the predetermined surge may be applied to the capacitor by the inductance in the actual system.

Evaluate the surge resistance in the actual system as required.

4-4. When using Class 2 ceramic capacitors in AC or pulse circuits, the capacitor itself vibrates at specific frequencies and noise may be generated. Moreover, when the mechanical vibration or shock is added to capacitor, noise may occur.

\land ΝΟΤΕ

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1.Application

This product specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type SA.

The safety standard certification is obtained as Class X1, Y2.

1.Specific applications:

• Consumer Equipment: Products that can be used in consumer equipment such as home appliances, audio/visual equipment, communication equipment, information equipment, office equipment, and household robotics, and whose functions are not directly related to the protection of human life and property.

• Industrial Equipment: Products that can be used in industrial equipment such as base stations, manufacturing equipment, industrial robotics equipment, and measurement equipment, and whose functions do not directly relate to the protection of human life and property.

•Medial Equipment [GHTF A/B/C] except for Implant Equipment: Products suitable for use in medical devices designated under the GHTF international classifications as Class A or Class B (the functions of which are not directly involved in protection of human life or property) or in medical devices other than implants designated under the GHTF international classifications as Class C (the malfunctioning of which is considered to pose a comparatively high risk to the human body).

•Automotive infotainment/comfort equipment: Products that can be used for automotive equipment such as car navigation systems and car audio systems that do not directly relate to human life and whose structure, equipment, and performance are not specifically required by law to meet technical standards for safety assurance or environmental protection.

2. Unsuitable Application: Applications listed in "Limitation of applications" in this product specification.

Approval standard and certified number

	Standard number	*Certified number	Rated voltage
ENEC	EN60384-14	40042990	X1: AC440 V(r.m.s.) / DC1,500 V
(VDE)	EN00384-14	40042990	Y2: AC400 V(r.m.s.) / DC1,500 V
UL/cUL	UL60384-14/CSA E60384-14	E37921	X1: AC440 V(r.m.s.)
CQC	IEC60384-14	CQC15001137840	Y2: AC400 V(r.m.s.)

*Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2.Rating

2-1. Operating temperature range

2-2.Rated Voltage

X1: AC440 V(r.m.s.) Y2: AC400 V(r.m.s.) DC1,500 V

2-3.Part number configuration

ex.)							
DE2	F3	SA	103	М	A3	В	Y02F
Series	Temperature	Certified	Capacitance	Capacitance	Lead	Package	Individual
	Characteristics	Туре		Tolerance	Style		Specification

Series

DE2 denotes class X1,Y2.

• Temperature Characteristics

Please confirm detailed specification on [Specification and test methods].

Code	Temperature Characteristics
1X	SL
B3	В
E3	E
F3	F

Certified Type

This denotes safety certified type name Type SA.

Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. ex.) In case of 103.

 $10 \times 10^3 = 10000 \text{ pF}$

Capacitance Tolerance

Please refer to [Part number list].

Lead Style

* Please refer to [Part number list].

Code	Lead Style
A*	Vertical crimp long type
J*	Vertical crimp short type
N*	Vertical crimp taping type

Package

Code	Package
А	Ammo pack taping type
В	Bulk type

Individual Specification

For part number that cannot be identified without "Individual Specification", it is added at the end of part number.

Code	Individual Specification			
Y02F	 Rated voltage : X1: AC440 V(r.m.s.) Y2: AC400 V(r.m.s.) DC1,500 V Halogen Free Br≤900ppm, Cl≤900ppm Br+Cl≤1500ppm CP wire Dielectric strength between lead wires: AC2,600 V(r.m.s.) 			

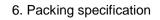
Note) Murata part numbers might be changed depending on Lead Style or any other changes. Therefore, please specify only the Certified Type (SA) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

Reference only

Marking	
Certified type	: SA
Capacitance	: Actual value(under 100 pF)
	3 digit system(100 pF and over)
Capacitance tolerance	: Code
Class code and Rated voltage mark	: X1 440~
	Y2 400~
Manufacturing year	: Letter code(The last digit of A.D. year.)
Manufacturing month	: Code
	$ \left(\begin{array}{ccc} \text{Feb./Mar.} \rightarrow 2 & \text{Aug./Sep.} \rightarrow 8 \\ \text{Apr./May} \rightarrow 4 & \text{Oct./Nov.} \rightarrow 0 \\ \text{Jun./Jul.} \rightarrow 6 & \text{Dec./Jan.} \rightarrow D \end{array} \right) $
	Apr./May \rightarrow 4 Oct./Nov. \rightarrow O
	└ Jun./Jul. → 6 Dec./Jan. → D
Compony name code	: CM15 (Made in Thailand)
Company name code	
	(Example)
	∕ SA 103M
	(X1 440~)
	Y2 400∼
	2D Cm15

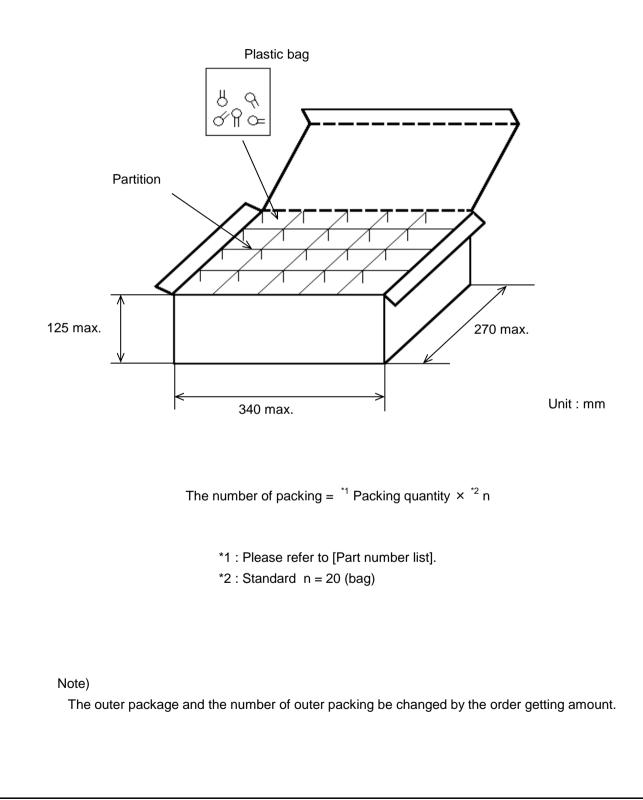
. Part number list	•Vertical crimp lo (Lead Style:A*)	ng typ	е							
Note). The m	Up to the end of crimp F ± 1.0			<pre></pre>		liamei	er (d)			
	see the following list about		•	.g (: ,			(-)		Unit :	mm
Customer	Murata	T.C.	Cap.	Cap.	Dimension (mm)				Lead	Pac qty
Part Number	Part Number		(pF)	tol.	D	Т	F	d	Style	(pc
	DE21XSA100KA3BY02F	SL	10	±10%	7.0	5.0	7.5	0.6	A3	25
	DE21XSA150KA3BY02F	SL	15	±10%	6.0	6.0	7.5	0.6	A3	50
	DE21XSA220KA3BY02F	SL	22	±10%	6.0	5.0	7.5	0.6	A3	50
	DE21XSA330KA3BY02F	SL	33	±10%	7.0	5.0	7.5	0.6	A3	25
	DE21XSA470KA3BY02F	SL	47	±10%	7.0	5.0	7.5	0.6	A3	25
	DE21XSA680KA3BY02F	SL	68	±10%	9.0	5.0	7.5	0.6	A3	25
	DE2B3SA101KA3BY02F	В	100	±10%	6.0	5.0	7.5	0.6	A3	50
	DE2B3SA151KA3BY02F	В	150	±10%	6.0	5.0	7.5	0.6	A3	50
	DE2B3SA221KA3BY02F	В	220	±10%	6.0	6.0	7.5	0.6		50
	DE2B3SA331KA3BY02F	В	330	±10%	6.0	5.0	7.5	0.6	A3	50
	DE2B3SA471KA3BY02F	В	470		7.0	5.0	7.5	0.6		25
	DE2B3SA681KA3BY02F	В	680	±10%	8.0	5.0	7.5	0.6		25
	DE2E3SA102MA3BY02F	E	1000	±20%	7.0	5.0	7.5	0.6		25
	DE2E3SA152MA3BY02F	E	1500	±20%	8.0	5.0	7.5	0.6		25
	DE2E3SA222MA3BY02F	E	2200	±20%	9.0	5.0	7.5	0.6		25
	DE2E3SA332MA3BY02F	E	3300	±20%	12.0	5.0	7.5	0.6		20
	DE2E3SA472MA3BY02F	E	4700	±20%	13.0	5.0	7.5	0.6		20
	DE2F3SA103MA3BY02F	F	10000	±20%	14.0	5.0	7.5	0.6	A3	20

	Up to the end of crimp F ± 0.8	*	5±1.0 5±0.5	\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow	5						
•	rk ' * ' of Lead Style differ fr see the following list about		•	ng (F) and	lead o	liamet	er (d).				
									Unit :	mm	
Customer	Murata	T.C. Cap.	Cap. (pF)	Cap.	Dimension			n)	Lead	Pa	
Part Number	Part Number	1.0.		(pF)	(pF)	tol.	D	т	F	d	Style
	DE21XSA100KJ3BY02F	SL	10	±10%	7.0	5.0	7.5	0.6	J3	50	
	DE21XSA150KJ3BY02F	SL	15	±10%	6.0	6.0	7.5	0.6	J3	50	
	DE21XSA220KJ3BY02F	SL	22	±10%	6.0	5.0	7.5	0.6	J3	50	
	DE21XSA330KJ3BY02F	SL	33	±10%	7.0	5.0	7.5	0.6	J3	50	
	DE21XSA470KJ3BY02F	SL	47	±10%	7.0	5.0	7.5	0.6	J3	50	
	DE21XSA680KJ3BY02F	SL	68	±10%	9.0	5.0	7.5	0.6	J3	50	
	DE2B3SA101KJ3BY02F	В	100	±10%	6.0	5.0	7.5	0.6	J3	5	
			450	±10%	6.0	5.0	7.5	0.6	J3	50	
	DE2B3SA151KJ3BY02F	В	150								
	DE2B3SA221KJ3BY02F	В	220	±10%	6.0	6.0	7.5	0.6	J3	50	
	DE2B3SA221KJ3BY02F DE2B3SA331KJ3BY02F	B B	220 330	±10% ±10%	6.0 6.0	6.0 5.0	7.5	0.6	J3	50	
	DE2B3SA221KJ3BY02F DE2B3SA331KJ3BY02F DE2B3SA471KJ3BY02F	B B B	220 330 470	±10% ±10% ±10%	6.0 6.0 7.0	6.0 5.0 5.0	7.5 7.5	0.6 0.6	J3 J3	50 50	
	DE2B3SA221KJ3BY02F DE2B3SA331KJ3BY02F DE2B3SA471KJ3BY02F DE2B3SA681KJ3BY02F	B B B B	220 330 470 680	±10% ±10% ±10%	6.0 6.0 7.0 8.0	6.0 5.0 5.0 5.0	7.5 7.5 7.5	0.6 0.6 0.6	J3 J3 J3	50 50 50	
	DE2B3SA221KJ3BY02F DE2B3SA331KJ3BY02F DE2B3SA471KJ3BY02F DE2B3SA681KJ3BY02F DE2E3SA102MJ3BY02F	B B B B E	220 330 470 680 1000	±10% ±10% ±10% ±10% ±20%	6.0 6.0 7.0 8.0 7.0	6.0 5.0 5.0 5.0 5.0	7.5 7.5 7.5 7.5	0.6 0.6 0.6 0.6	J3 J3 J3 J3	50 50 50 50	
	DE2B3SA221KJ3BY02F DE2B3SA331KJ3BY02F DE2B3SA471KJ3BY02F DE2B3SA681KJ3BY02F DE2E3SA102MJ3BY02F DE2E3SA152MJ3BY02F	B B B B E E	220 330 470 680 1000 1500	±10% ±10% ±10% ±10% ±20% ±20%	6.0 6.0 7.0 8.0 7.0 8.0	6.0 5.0 5.0 5.0 5.0 5.0	7.5 7.5 7.5 7.5 7.5	0.6 0.6 0.6 0.6 0.6	J3 J3 J3 J3 J3 J3	50 50 50 50 50	
	DE2B3SA221KJ3BY02F DE2B3SA331KJ3BY02F DE2B3SA471KJ3BY02F DE2B3SA681KJ3BY02F DE2E3SA102MJ3BY02F DE2E3SA152MJ3BY02F DE2E3SA222MJ3BY02F	B B B B E E E	220 330 470 680 1000 1500 2200	±10% ±10% ±10% ±20% ±20% ±20%	6.0 6.0 7.0 8.0 7.0 8.0 9.0	6.0 5.0 5.0 5.0 5.0 5.0 5.0	7.5 7.5 7.5 7.5 7.5 7.5	0.6 0.6 0.6 0.6 0.6	J3 J3 J3 J3 J3 J3 J3	5 5 5 5 5 5	
	DE2B3SA221KJ3BY02F DE2B3SA331KJ3BY02F DE2B3SA471KJ3BY02F DE2B3SA681KJ3BY02F DE2E3SA102MJ3BY02F DE2E3SA152MJ3BY02F	B B B B E E	220 330 470 680 1000 1500	±10% ±10% ±10% ±10% ±20% ±20%	6.0 6.0 7.0 8.0 7.0 8.0	6.0 5.0 5.0 5.0 5.0 5.0	7.5 7.5 7.5 7.5 7.5	0.6 0.6 0.6 0.6 0.6	J3 J3 J3 J3 J3 J3 J3	50 50 50	


			F Ød	Tmax.										
Please see the following) list or	taping s	specifica	tion ab	out de	etails.			Unit :	mm				
Murata		Cap.	Cap. Cap. Dimension (r				(mm)		Lead	Pa				
Part Number	T.C.	C. (pF)					tol.	D	Т	F	d	Ρ	Style	
DE21XSA100KN3AY02F	SL	10	±10%	7.0	5.0	7.5	0.6	15.0	N3	90				
DE21XSA150KN3AY02F	SL	15	±10%	6.0	6.0	7.5	0.6			90				
DE21XSA220KN3AY02F		22	±10%	6.0			0.6			90				
										90				
										90				
										90 90				
										90				
DE2B3SA221KN3AY02F	B	220	±10%	6.0	6.0	7.5	0.6	15.0		90				
	╉───┥	330	±10%	6.0	5.0	7.5	0.6			90				
DE2B3SA331KN3AY02F	В									0				
	B B	470	±10%	7.0	5.0	7.5	0.6	15.0	N3	90				
DE2B3SA331KN3AY02F		470 680	±10% ±10%	7.0 8.0	5.0 5.0	7.5 7.5	0.6 0.6	15.0 15.0		90 90				
DE2B3SA331KN3AY02F DE2B3SA471KN3AY02F	B B E					7.5 7.5		15.0	N3	90				
DE2B3SA331KN3AY02F DE2B3SA471KN3AY02F DE2B3SA681KN3AY02F DE2E3SA102MN3AY02F DE2E3SA152MN3AY02F	B B E E	680 1000 1500	±10% ±20% ±20%	8.0 7.0 8.0	5.0 5.0 5.0	7.5 7.5 7.5	0.6 0.6 0.6	15.0 15.0 15.0	N3 N3 N3	9(9(
DE2B3SA331KN3AY02F DE2B3SA471KN3AY02F DE2B3SA681KN3AY02F DE2E3SA102MN3AY02F DE2E3SA152MN3AY02F DE2E3SA222MN3AY02F	B B E E E	680 1000 1500 2200	±10% ±20% ±20% ±20%	8.0 7.0 8.0 9.0	5.0 5.0 5.0 5.0	7.5 7.5 7.5 7.5	0.6 0.6 0.6 0.6	15.0 15.0 15.0 15.0	N3 N3 N3 N3	9(9(9(9(
DE2B3SA331KN3AY02F DE2B3SA471KN3AY02F DE2B3SA681KN3AY02F DE2E3SA102MN3AY02F DE2E3SA152MN3AY02F	B B E E	680 1000 1500	±10% ±20% ±20%	8.0 7.0 8.0	5.0 5.0 5.0	7.5 7.5 7.5	0.6 0.6 0.6	15.0 15.0 15.0	N3 N3 N3 N3 N3	-				
	The mark ' * ' of Lead Si lead diameter (d) and pi Please see the following Murata Part Number DE21XSA100KN3AY02F DE21XSA150KN3AY02F	Murata Part NumberT.C.DE21XSA100KN3AY02FSLDE21XSA150KN3AY02FSLDE21XSA30KN3AY02FSLDE21XSA30KN3AY02FSLDE21XSA30KN3AY02FSLDE21XSA30KN3AY02FSLDE21XSA30KN3AY02FSLDE21XSA30KN3AY02FSLDE21XSA30KN3AY02FSLDE21XSA30KN3AY02FSLDE21XSA30KN3AY02FSLDE21XSA680KN3AY02FSLDE21XSA680KN3AY02FSLDE21XSA680KN3AY02FSLDE21XSA680KN3AY02FSLDE2B3SA101KN3AY02FB	The mark ' * ' of Lead Style differ from lead diameter (d) and pitch of comport Please see the following list or taping stMurata Part NumberT.C.Cap. (pF)DE21XSA100KN3AY02FSL10DE21XSA150KN3AY02FSL10DE21XSA20KN3AY02FSL15DE21XSA30KN3AY02FSL22DE21XSA30KN3AY02FSL23DE21XSA30KN3AY02FSL33DE21XSA680KN3AY02FSL68DE2B3SA101KN3AY02FB100	Image: Free determinedFedd diameter (d) and pitch of compoment (P). Please see the following list or taping specificaMurata Part NumberT.C.Cap. (pF)Cap. tol.DE21XSA100KN3AY02FSL10±10% tol.DE21XSA150KN3AY02FSL15±10% tol.DE21XSA30KN3AY02FSL22±10% tol.DE21XSA30KN3AY02FSL33±10% tol.DE21XSA30KN3AY02FSL47±10% tol.DE21XSA330KN3AY02FSL47±10% tol.DE21XSA680KN3AY02FSL68±10% tol.DE21XSA680KN3AY02FSL68±10% tol.	$\frac{1}{100} + \frac{1}{100} + \frac{1}$	$\frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000000000000000000000000000000000$	$\frac{1}{100} + \frac{1}{100} + \frac{1}$	$\frac{1}{p_{ab}} = \frac{1}{p_{ab}} + \frac{1}$	$\frac{1}{10000000000000000000000000000000000$	$\frac{1}{10000000000000000000000000000000000$				

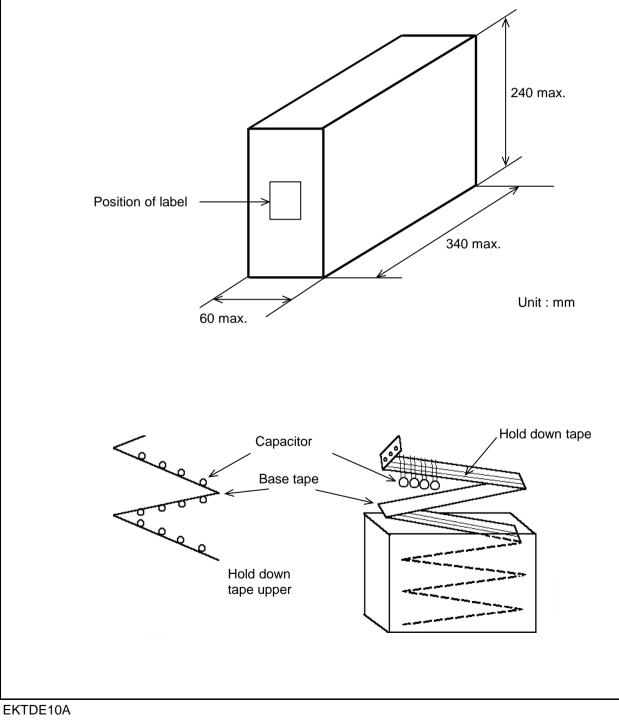
E Cn	ecification									
No.		titem	Specification	Test Method (Ref. Standard:JIS C 5101(all parts), IEC60384(all parts)						
1	Appearance and	d dimensions	No marked defect on appearance form and dimensions. Please refer to [Part number list].	The capacitor should be inspected by naked eyes for visible evidence of defect. Dimensions should be measured with slide calipers.						
2	Marking		To be easily legible.	The capacitor should be inspected by naked eyes.						
3	Dielectric strength	Between lead wires	No failure.	The capacitor should not be damaged when AC2,600 V(r.m.s.) <50/6 Hz> and DC3,225 V is applied between the lead wires for 60 s.						
		Terminal To External Resin	No failure.	First, the terminals of the capacitor should be connected together. Then, a metal foil should be closely wrapped around the body of the capacitor to the distance of about 3 to 4 mm from each terminal. Then, the capacitor should be inserted into a container filled with metal balls of about 1 mm diameter. Finally, AC2,600 V(r.m.s.) <50/60 Hz> and DC3,225 V is applied for 6						
4	Insulation Resis	tance (I.R.)	10,000 MΩ min.	The insulation resistance should be measured with DC500 \pm 50 V with 60 \pm 5 s of charging. The voltage should be applied to the capacitor through a resistor of 1 M Ω .						
5	Capacitance		Within specified tolerance.	The capacitance should be measured at 20 °C with 1±0.1 kHz and AC1±0.2 V(r.m.s.) max						
6	Dissipation Fact	tor (D.F.)	Char. B, E : DF≦0.025 Char. F : DF≦0.05	The dissipation factor should be measured at 20 °C with 1 ± 0.1 kHz and AC1 ±0.2 V(r.m.s.) max						
	Temperature ch			The capacitance measurement should be made at each step specifie in Table. Step 1 2 3 4 5 mp.(°C) 20±2 -25±2 20±2 85±2 20±2						
8	Active flammabi	ility	The cheese-cloth should not be on fire.	The capacitors should be individually wrapped in at least one but mothan two complete layers of cheese-cloth. The capacitor should be subjected to 20 discharges. The interval between successive discharges should be 5 s. The UAc should be maintained for 2 min after the last discharge. $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $						

No.	Tes	t Item	Specification	Test Method (Ref. Standard:JIS C 5101(all parts), IEC60384(all parts))	
9	Robustness of terminations	Tensile	Lead wire should not cut off. Capacitor should not be broken.	Fix the body of capacitor, apply a tensile weight gradually to each lead wire in the radial direction of capacitor up to 10 N and keep it for 10 ± 1 s.	
		Bending		With the termination in its normal position, the capacitor is held by its body in such a manner that the axis of the termination is vertical; a mass applying a force of 5 N is then suspended from the end of the termination. The body of the capacitor is then inclined, within a period of 2 to 3 s, through an angle of about 90 $^{\circ}$ in the vertical plane and then returned to its initial position over the same period of time; this operation constitutes one bend. One bend immediately followed by a second bend in the opposite direction.	
10	Vibration	Appearance	No marked defect.	The capacitor should be firmly soldered to the supporting lead wire and	
	resistance	Capacitance	Within the specified tolerance.	vibration which is 10 to 55 Hz in the vibration frequency range, 1.5 mm	
		Dissipation	Char. B, E : DF≦0.025	in total amplitude, and about 1 min in the rate of vibration change from 10 Hz to 55 Hz and back to 10 Hz is applied for a total of 6 h; 2 h each	
		Factor (D.F.)	Char. F : DF≦0.05	in 3 mutually perpendicular directions.	
11	Solderability of	eads	Lead wire should be soldered with uniformly coated on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a rosin ethanol (25 % rosin in weight propotion). Immerse in solder solution for 2±0.5 s. In both cases the depth of dipping is up to about 1.5 to 2.0 mm from the root of lead wires. Temp. of solder : 245±5 °C	
12	Soldering	Appearance	No marked defect.	Solder temperature : 350±10 °C or 260±5 °C	
	effect (Non-preheat)	Capacitance change	Within ±10 %	Immersion time $: 3.5\pm0.5$ s (In case of 260±5 °C : 10±1 s) The depth of immersion is up to about 1.5 to 2.0 mm from the root of lead wires.	
		I.R.	1,000 MΩ min.		
		Dielectric strength	Per item 3	Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then placed at *room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 1 to 2 h at *room condition.	
13	Soldering	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5 °C for 60+0/-5 s. Ther as in figure, the lead wires should be immersed solder of 260+0/-5 °C up to 1.5 to 2.0 mm from the root of terminal for	
	effect (On-preheat)	Capacitance change	Within ±10 %		
		I.R.	1,000 MΩ min.	7.5+0/-1 s.	
		Dielectric	Per item 3	Thermal Capacitor insulating	
		strength		1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	
				Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then placed at *room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 1 to 2 h at *room condition.	


No.	Tes	t Item	Specification	Test Method (Ref. Standard:JIS C 5101(all parts), IEC60384(all parts))	
14	Flame test		The capacitor flame discontinue as follows.	The capacitor should be subjected to applied flame for 15 s. and then removed for 15 s until 5 cycles.	
			CycleTime1 to 430 s max.560 s max.	Gas Burner (in mm)	
15	Passive flamma	-	The burning time should not be exceeded the time 30 s. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Time of exposure to flame is for 30 s. Length of flame : 12±1 mm Gas burner : Length 35 mm min. Inside Dia. 0.5±0.1 mm Outside Dia. 0.9 mm max. Gas : Butane gas Purity 95 % min. Gas : Butane gas Purity 95 % min.	
16	Humidity (Under steady state)	Appearance Capacitance change Dissipation Factor (D.F.) I.R. Dielectric strength	No marked defect. Char. SL : Within ± 5 % Char. B : Within ± 10 % Char. E, F : Within ± 15 % Char. SL : DF ≤ 0.025 Char. SL : DF ≤ 0.05 Char. F : DF ≤ 0.075 3,000 M Ω min. Per item 3	Set the capacitor for 500±12 h at 40±2 °C in 90 to 95 % relative humidity. Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then placed at *room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 1 to 2 h at *room condition.	
17-1	Humidity loading (AC)	Appearance Capacitance change Dissipation Factor (D.F.) I.R. Dielectric strength	No marked defect. Char. SL : Within ± 5 % Char. B : Within ± 10 % Char. E, F : Within ± 15 % Char. SL : DF ≤ 0.025 Char. B, E : DF ≤ 0.05 Char. F : DF ≤ 0.075 3,000 M Ω min. Per item 3	Apply AC440 V(r.m.s.) for 500±12 h at 40±2 °C in 90 to 95 % relative humidity. Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then placed at *room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 1 to 2 h at *room condition.	
17-2	Humidity loading (DC)	Appearance Capacitance change Dissipation Factor (D.F.) I.R. Dielectric strength	No marked defect. Char. SL : Within ± 5 % Char. B : Within ± 10 % Char. E, F : Within ± 15 % Char. SL : DF ≤ 0.025 Char. B, E : DF ≤ 0.05 Char. F : DF ≤ 0.075 3,000 M Ω min. Per item 3	Apply DC1,500 V for 500±12 h at 40±2 °C in 90 to 95 % relative humidity. Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then placed at *room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 1 to 2 h at *room condition.	

18. 3.000 MC min. Dielectric strength Per item 3 18. 3.000 MC min. Dielectric strength Per item 3 19 Appearance intergent No marked defect. 18.2 Life (DC) Appearance intergent No marked defect. 19 Copic and the intergent intergent 19 Temperature Cycle Appearance intergent 19 Temperature Cycle Appearance intergent No marked defect. 19 Temperature Cycle Appearance intergent No marked defect. 10 Cycle No marked defect. Inputs woltage intergent 10 Char, B Simple for thould be stored of r24±2 h at 'room condition. 19 Char, B No marked defect. Cycle Char,	No.	Test Item		Specification	Test Method (Ref. Standard:JIS C 5101(all parts), IEC60384(all parts)				
Image Nomini 20 /// Provide the set of the	8-1	Life (AC)	Appearance	No marked defect.	Impulse voltage				
Dielectric strength Per item 3 B2 Life (DC) Appearance No marked defect. Capacitance change No marked defect. Expactor should be stored for 24±2 h at "room condition B2 Life (DC) Appearance No marked defect. Capacitance change No marked defect. Expactor should be stored for 24±2 h at "room condition B2 Life (DC) Appearance No marked defect. Capacitance change Within ±20 % change Expactor should be stored for 24±2 h at "room condition B2 Life (DC) Appearance No marked defect. Capacitance change Within ±20 % change Expactor should be stored for 24±2 h before initial measurements. Dielectric strength Per item 3 Front item (T) = 1.7 µ=1.67T Time to hall/value (T2) = 50 µs 19 Temperature Copacitance change No marked defect. Expactor should be stored for 24±2 h before initial measurements. 19 Temperature Copacitance change No marked defect. Expactor should be stored for 24±2 h before initial measurements. 10 Temperature Copacitor of Noull Char. E, F = Within ±20 % Char. E, F = DE 0.05 Char. F =		. ,		Within ±20 %	Each individual capacitor should be subjected to a 8 kV impulses for three times or more. Then the capacitors are applied to life test.				
Delectic strength Per item 3 Delectic strength No marked defect. I.R. 3.000 MD min. Delectic change Per item 3 Delectic strength Per item 3			I.R.	3,000 MΩ min.					
1,000 h. The air in the oven is maintained at a temperature of 125+2/-0°C, and relative humidity 650% max. Throughout the the capacitors are subjected to a AC880 V(r.m.s.) to C0506 Hz- atternating voltage of mains frequency, except that once each hc voltage is increased to AC1,000 V(r.m.s.) to C100 V(r.m.				Per item 3					
Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2.000 V(r.m.s.) 60 s then place at 'room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) 8-2 Life (DC) Appearance Capacitance change No marked defect. Each individual capacitor should be stored for 24±2 h at 'room condition. 8-2 Life (DC) Appearance three times or more. Then the capacitors are applied to life test. Impulse voltage Each individual capacitor should be stored to 124±2 h at 'room condition. 8-2 Life (DC) Appearance three times or more. Then the capacitors are applied to life test. Impulse voltage Each individual capacitor should be stored at 125±2 °C for 1 h, and apply the AC2.000 V(r.m.s.) 60 s then place at 'room condition or 24±2 h before initial measurements. 19 Temperature Cycle Appearance Change No marked defect. Capacitance Change Char. SL : Within ±5 % Char. E, F, F: Within ±20 % Char. E, F, F: Within ±20 % Char. F, E, DF \$0.05 Char. F, E, DF \$0.05 Char. F, E : DF \$0.05					The air in the oven is maintained at a temperature of 125+2/-0 °C, and relative humidity of 50 % max Throughout the te				
Capacitance change Within ±20 % Each individual capacitor should be subjected to a 8 kV impulses three times or more. Then the capacitors are applied to life test. 1.R. 3,000 MΩ min. Dielectric strength Per item 3 Dielectric strength Per item 3 apply DC2,550 V for 1,000 h at 125±2°C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then place at "room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) 19 Temperature Cycle Capacitance change Char. SL : Within ±5 % Char. B, F : DF≤0.055 Char. F, F : Within ±10 %, Char. E, F : Within ±20 % Step Temperature("C) Time 1 4:4040/:3 30 min 3 125±3'/-0 30 m					Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then placed at *room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 24±2 h at *room				
1 R. 3,000 MΩ min. Dielectric Per item 3 3 Per item 3 0 Temperature Cycle Capacitance 1 R. 3 3,000 MΩ min. 1 Dielectric 3 Per item 3 1 Peritemment: Capacitor should be stored for	8-2	Life (DC)	Appearance	No marked defect.					
1.N. 3,000 ML2 mint. Dielectric strength Per item 3 1 Temperature Cycle Ppearance change No marked defect. 1 Capacitance change Char. SL : Within ±10 % Char. E, F : Within ±20 % Step Temperature(°C) 1 Time to half-value (T2) = 50 µs 1 Temperature Cycle Appearance Char. SL : Within ±5 % Char. B, E : DF ≤0.025 Char. B, E : DF ≤0.025 Char. F, F : Within ±20 % Step Temperature(°C) 1 Time 1 1 Temperature Copic (D.F.) Char. SL : DF ≤0.025 Char. F, F : DF ≤0.075 Time 1 300 min 2 1 Room temp. 3 min 3 125+3/-0 30 min 2 1 3,000 MΩ min. Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then place at "room condition. 1 Per item 3 Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then place at "room condition for 24±2 h before initial measurements. (D on ot apply to Char. SL)				Within ±20 %	three times or more. Then the capacitors are applied to life test.				
Dielectric strength Per item 3 Dielectric strength Per item 3 Apply DC2,550 V for 1,000 h at 125+2/-0 °C, relative humidity 50 max. Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then placed at "room condition for 24±2 h before initial measurements. (Do not apply to Char. SL.) 19 Temperature Cycle Appearance change No marked defect. Char. B. E: Within ±5 % Char. E, F: Within ±0 % Char. E, F: Within ±0 % Char. E, F: Within ±0 % Char. F. SL : DF≤0.025 Char. B, E: DF≤0.05 Char. F. = DF≤0.075 Step Temperature(°C) Time 1 40+0/-3 30 min 2 Room temp. 3 min 3 125+3/-0 30 min 3 125+3/-0 30 min 2 Room temp. 3 min 3 125+3/-0 30 min 2 Room temp. 3 min 3 125+3/-0 30 min 2 Room temp. 3 min 2 Room temp. 3 min 2 Room temp. 3 min 3 125+3/-0 30 min 3 125+3/-0 30 min 3 125+3/-0 30 min 4 Room temp. 3 min 2 Cycle time : 500 cycles I.R. 3,000 MΩ min. Dielectric strength Per item 3 Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then placed at "room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 24±2 h at "room			I.R.	3,000 MΩ min.	Time to half-value (T2) = 50 μ s				
Imax. Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then placed at "room condition for 24±2 h before initial measurements. (Do not apply to Char. SL.) 19 Temperature Cycle Appearance No marked defect. Capacitance Char. SL : Within ±5 % (Dara Char. SL : Within ±10 %) Char. E, F : Within ±20 % Char. SL : DF≤0.025 Dissipation Char. SL : DF≤0.025 Factor (D.F.) Char. SL : DF≤0.05 Char. F : DF≤0.075 Char. F : DF≤0.075 I.R. 3,000 MΩ min. Dielectric strength Per item 3 Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then placed at "room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 24±2 h at "room				Per item 3					
and apply the AC2,000 V(r.m.s.) 60 s then placed at "room condition for 24±2 h before initial measurements. (Do not apply to Char. SL.) 19 Temperature Cycle Appearance No marked defect. Capacitance change Char. SL : Within ±5 % Char. B : Within ±10 % Char. E, F : Within ±20 % Step Temperature(°C) Time Dissipation Factor (D.F.) Char. SL : DF≤0.025 Char. F : DF≤0.05 Char. F : DF≤0.075 Step Temperature(°C) Time I.R. 3,000 MΩ min. Dielectric strength Per item 3 Step Temperature(°C) Time Dielectric strength Per item 3 Dielectric strength Per item 3 No					Apply DC2,550 V for 1,000 h at 125+2/-0 °C, relative humidity 50 % max.				
CycleCapacitance changeChar. SL : Within $\pm 5 \ \%$ Char. B : Within $\pm 10 \ \%$ Char. E, F : Within $\pm 20 \ \%$ StepTemperature(°C)TimeDissipation Factor (D.F.)Char. SL : DF ≤ 0.025 Char. B, E : DF ≤ 0.05 Char. F : DF ≤ 0.075 Char. SL : DF ≤ 0.075 30 minI.R.3,000 MQ min.Pre-treatment : Capacitor should be stored at 125 $\pm 2 \ \%$ C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then placed at *room condition for 24 ± 2 h before initial measurements. (Do not apply to Char. SL)Post-treatment : Capacitor should be stored for 24 ± 2 h at *room					and apply the AC2,000 V(r.m.s.) 60 s then placed at *room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 24±2 h at *room				
CycleCapacitance changeChar. SL : Within $\pm 5 \ \%$ Char. B : Within $\pm 10 \ \%$ Char. E, F : Within $\pm 20 \ \%$ StepTemperature(°C)TimeDissipation Factor (D.F.)Char. SL : DF ≤ 0.025 Char. B, E : DF ≤ 0.05 Char. F : DF ≤ 0.075 Char. SL : DF ≤ 0.075 30 minI.R.3,000 MQ min.Pre-treatment : Capacitor should be stored at 125 $\pm 2 \ ^{\circ}C$ for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then placed at *room condition for 24 ± 2 h before initial measurements. (Do not apply to Char. SL)Post-treatment : Capacitor should be stored for 24 ± 2 h at *room	19	Temperature	Appearance	No marked defect.					
changeChar. B <th: <math="" within="">\pm 10 \% Char. E, F: Within $\pm 20 \%$1$-40+0/-3$30 minDissipation Factor (D.F.)Char. SL : DF ≤ 0.025 Char. B, E: DF ≤ 0.05 Char. FChar. SL : DF ≤ 0.05 Char. FA Room temp.3 minI.R.3,000 M\Omega min.Cycle time : 500 cyclesDielectric strengthPer item 3Pre-treatment : Capacitor should be stored at 125 ± 2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then placed at *room condition for 24 ± 2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 24 ± 2 h at *room</th:>									
Dissipation Factor (D.F.) Char. SL : DF≦0.025 Char. B, E : DF≦0.05 Char. F : DF≦0.075 4 Room temp. 3 min I.R. 3,000 MΩ min. Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then placed at *room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 24±2 h at *room				Char. B : Within ±10 %	2 Room temp. 3 min				
Factor (D.F.) Char. B, E : DF≤0.05 Char. F : DF≤0.075 Cycle time: 500 cycles I.R. 3,000 MΩ min. Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then placed at *room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 24±2 h at *room			Dissination	Char SL \rightarrow DE<0.025					
I.R. 3,000 MΩ min. Pre-treatment : Capacitor should be stored at 125±2 °C for 1 h, and apply the AC2,000 V(r.m.s.) 60 s then place at *room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 24±2 h at *room				Char. B, E : DF≦0.05					
Dielectric strength Per item 3 And apply the AC2,000 V(r.m.s.) 60 s then placed at *room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 24±2 h at *room			I P						
Post-treatment : Capacitor should be stored for 24±2 h at *room			Dielectric		and apply the AC2,000 V(r.m.s.) 60 s then placed at *room condition for 24±2 h before initial measurements.				
					Post-treatment : Capacitor should be stored for 24±2 h at *room				

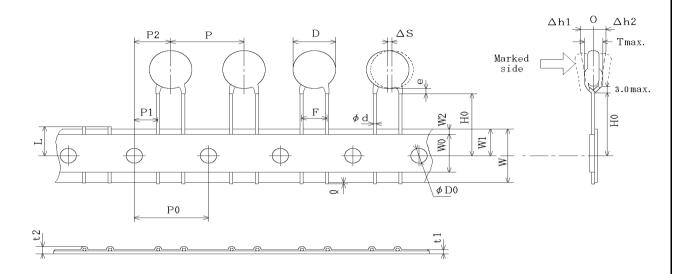
•Bulk type (Package : B)


The size of packing case and packing way

Ammo pack taping type (Package : A)

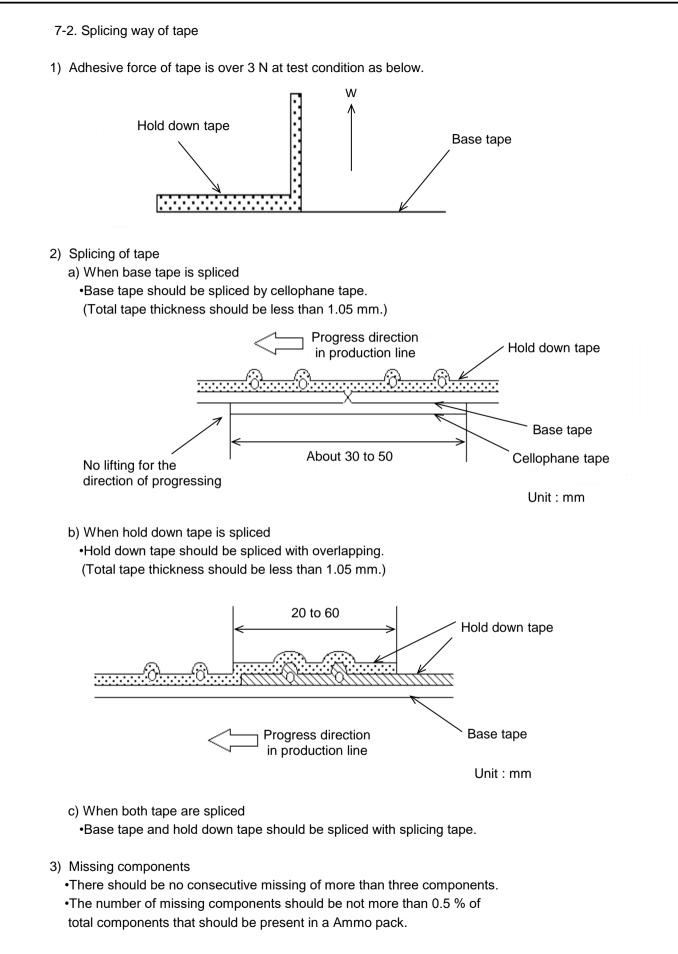
- •The tape with capacitors is packed zigzag into a case.
- •When body of the capacitor is piled on other body under it.
- •There should be 3 pitches and over without capacitors in leader and trailer.

The size of packing case and packing way



7. Taping specification

7-1. Dimension of capacitors on tape


Vertical crimp taping type < Lead Style : N3 >

Pitch of component 15.0 mm / Lead spacing 7.5 mm

Unit : mm

Item	Code	Dimensions	Remarks
Pitch of component		15.0+/-2.0	i i i i i i i i i i i i i i i i i i i
Pitch of sprocket hole	P P0	15.0+/-2.0	
•			
Lead spacing	F	7.5+/-1.0	
Length from hole center to component center	P2	7.5+/-1.5	Deviation of progress direction
Length from hole center to lead	P1	3.75+/-1.0	Deviation of progress direction
Body diameter	D	Please refer to	[Part number list].
Deviation along tape, left or right	ΔS	0+/-2.0	They include deviation by lead bend.
Carrier tape width		18.0+/-0.5	
Position of sprocket hole		9.0+/-0.5	Deviation of tape width direction
Lead distance between reference and bottom planes		18.0+2.0/-0	
Protrusion length		+0.5~-1.0	
Diameter of sprocket hole		4.0+/-0.1	
Lead diameter		0.60+/-0.05	
Total tape thickness		0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire		1.5 max.	thickness.
Deviation across tape, front Deviation across tape, rear		2.0 max.	
		2.0 max.	
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width		11.5 min.	
Hold down tape position		1.5+/-1.5	
Coating extension on lead		Up to the end of crimp	
Body thickness		Please refer to	[Part number list].

