
COMPLIANT

N-Channel 20-V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$	I _D (A) ^a	Q _g (Typ.)		
	0.015 at V _{GS} = 4.5 V	12			
20	0.017 at V _{GS} = 2.5 V	12	21 nC		
	0.021 at V _{GS} = 1.8 V	12			

PowerPAK ChipFET Single **Bottom View**

Ordering Information:

Si5486DU-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES

- TrenchFET® Power MOSFET
- New Thermally Enhanced PowerPAK® ChipFET® Package
 - Small Footprint Area
 - Low On-Resistance
 - Thin 0.8 mm Profile
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Load Switch, PA Switch, and for Portable Applications
- Point-of-Load

N-Channel MOSFET

ABSOLUTE MAXIMUM RATIN	IGS (T _A = 25 °C	, unless oth	erwise noted)		
Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V_{DS}	20	V	
Gate-Source Voltage		V_{GS}	± 8	\ \ \	
	T _C = 25 °C		12 ^a		
Continuous Drain Current (T _{.1} = 150 °C)	T _C = 70 °C	ļ _{I_}	12 ^a		
Continuous Diain Current (1) = 130 C)	T _A = 25 °C	I _D	11.6 ^{b, c}		
	T _A = 70 °C		9.3 ^{b, c}	Α	
Pulsed Drain Current	•	I _{DM}	40		
Continuous Source-Drain Diode Current	T _C = 25 °C		12 ^a		
Continuous Source-Diam Diode Current	T _A = 25 °C	- I _S	2.6 ^{b, c}		
	T _C = 25 °C		31		
Maximum Power Dissipation	T _C = 70 °C	P _D	20	W	
	T _A = 25 °C	'D	3.1 ^{b, c}	T VV	
	T _A = 70 °C		2 ^{b, c}	7	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150	°C	
Soldering Recommendations (Peak Temperature) ^{d, e}			260		

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^{b, f}	t ≤ 5 s	R_{thJA}	34	40	°C/W
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	3	4	O/ VV

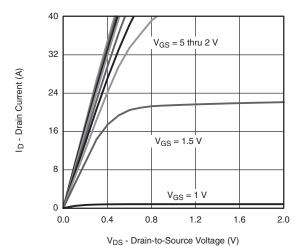
Notes:

- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- d. See solder profile (<u>www.vishay.com/doc?73257</u>). The PowerPAK ChipFET is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.
- f. Maximum under steady state conditions is 90 °C/W.

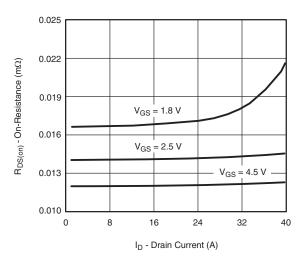
Document Number: 73783 S13-0194-Rev. C, 28-Jan-13

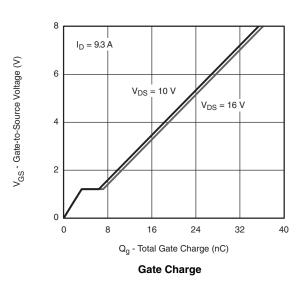
Vishay Siliconix

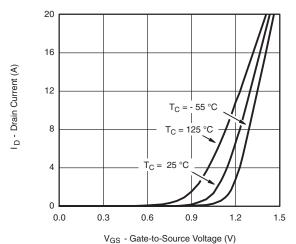
SPECIFICATIONS ($T_J = 25 ^{\circ}C$					1		
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static	_			T	,		
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	20			V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA		21			
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	ι _D = 230 μ/		- 3.4			
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	0.4		1	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			± 100	nA	
Zara Cata Valtaga Drain Current	1	V _{DS} = 20 V, V _{GS} = 0 V			1		
ero Gate Voltage Drain Current	IDSS	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$		10	μΑ		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	40			Α	
		$V_{GS} = 4.5 \text{ V}, I_D = 7.7 \text{ A}$		0.012	0.015		
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = 2.5 \text{ V}, I_D = 7.3 \text{ A}$		0.014	0.017	Ω	
Drain-Source On-State Hesistance	_ = 5(5)	V _{GS} = 1.8 V, I _D = 4.8 A		0.017	0.021	- "	
Forward Transconductance ^a	9 _{fs}	$V_{DS} = 10 \text{ V}, I_D = 7.7 \text{ A}$		46		s	
Dynamic ^b	0.0	20 2		<u> </u>			
Input Capacitance	C _{iss}			2100			
Output Capacitance	C _{oss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		310		pF	
Reverse Transfer Capacitance	C _{rss}	56 7 de 7		180		pF nC	
The state of the s	- 133	V _{DS} = 10 V, V _{GS} = 8 V, I _D = 9.3 A		36	54	54	
Total Gate Charge	Q_g	103 10 1, 103 1 1, 10 110 1		21	32		
Gate-Source Charge	Q _{gs}	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 9.3 \text{ A}$		3.3		nC	
Gate-Drain Charge	Q _{gd}	VDS = 10 V, VGS = 4.5 V, ID = 9.5 A		3.1			
Gate Resistance	R _g	f = 1 MHz		5		Ω	
Turn-on Delay Time	t _{d(on)}			10	15		
Rise Time	t _r	$V_{DD} = 10 \text{ V}, R_1 = 1.1 \Omega$		15	25		
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 9.3 \text{ A, } V_{GEN} = 4.5 \text{ V, } R_g = 1 \Omega$		50	75	ns	
Fall Time	t _f	ŭ		15	25		
Turn-On Delay Time				7	15		
Rise Time	t _{d(on)}	$V_{DD} = 10 \text{ V}, R_{L} = 1.1 \Omega$					
	t _r	$I_D \cong 9.3 \text{ A}, V_{GEN} = 10 \text{ V}, R_a = 1 \Omega$		15	25		
Turn-Off Delay Time	t _{d(off)}	D AGEN A		55	85		
Fall Time	t _f			10	15		
Drain-Source Body Diode Characteristi	· .	T 05 °C		T	10		
Continuous Source-Drain Diode Current	IS	T _C = 25 °C			12	Α	
Pulse Diode Forward Current	I _{SM}	1 01 4 1/ 01/		6.0	40	L .,	
Body Diode Voltage	V _{SD}	I _S = 9.1 A, V _{GS} = 0 V		0.8	1.2		
Body Diode Reverse Recovery Time	t _{rr}			30	60	-	
Body Diode Reverse Recovery Charge	Q _{rr}	$I_F = 9.3 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$		17	30	nC	
Reverse Recovery Fall Time	overy Fall Time t _a 12			ns			
Reverse Recovery Rise Time	t _b			18			


Notes:

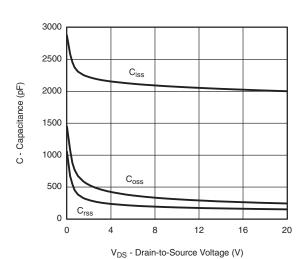
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 % b. Guaranteed by design, not subject to production testing.

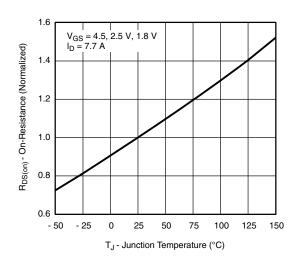

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



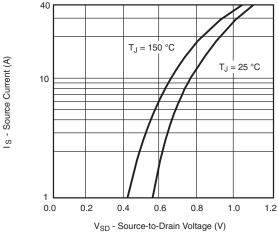
Output Characteristics

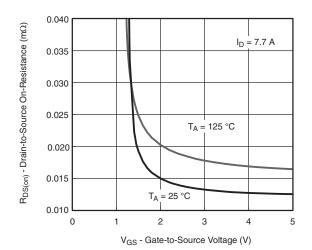


On-Resistance vs. Drain Current and Gate Voltage



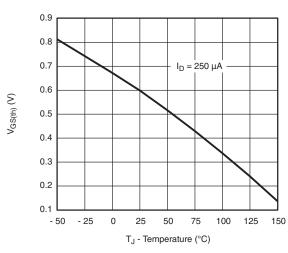
Transfer Characteristics

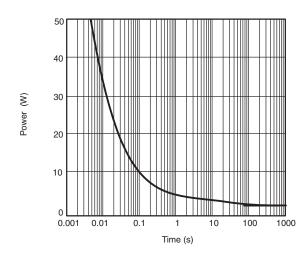

Capacitance



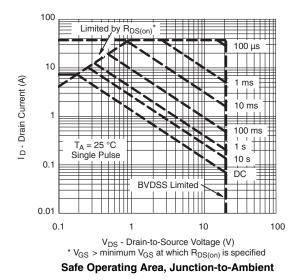
On-Resistance vs. Junction Temperature

Vishay Siliconix


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

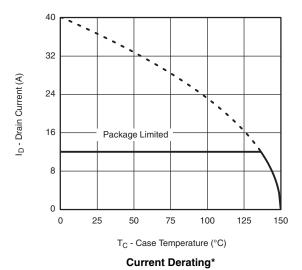


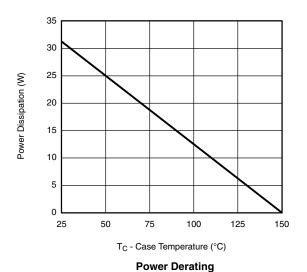
Source-Drain Diode Forward Voltage


On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

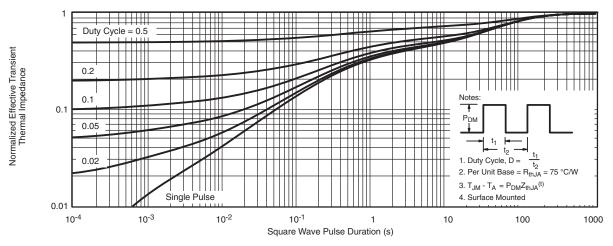
Single Pulse Power, Junction-to-Ambient



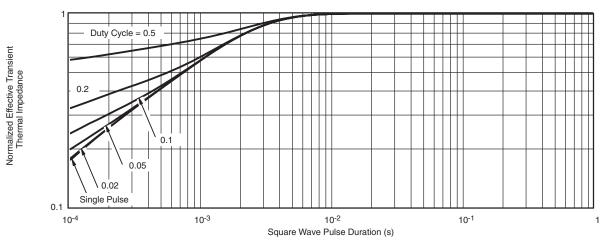


limit.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

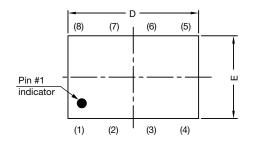


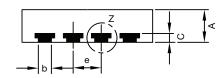
^{*} The power dissipation P_D is based on $T_{J(max.)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package

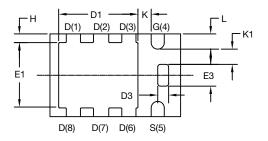

Vishay Siliconix

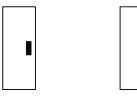
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

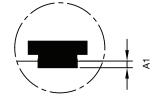
Normalized Thermal Transient Impedance, Junction-to-Ambient

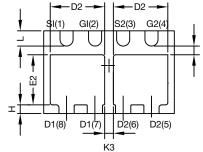



Normalized Thermal Transient Impedance, Junction-to-Case


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?73783.


PowerPAK® ChipFET® Case Outline


Backside view of single pad


Side view of single

Side view of dual

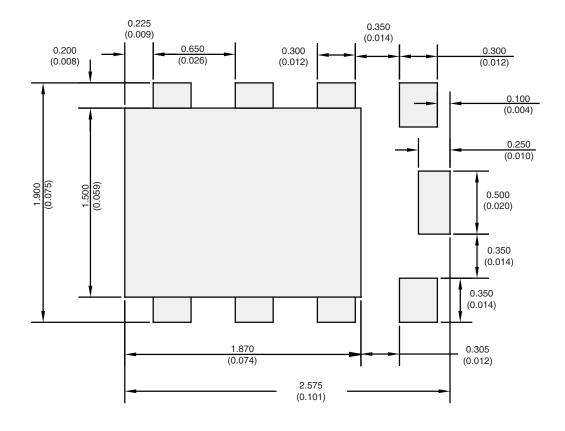
Detail Z

Backside view of dual pad

DIM.		MILLIMETERS			INCHES			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	0.70	0.75	0.85	0.028	0.030	0.033		
A1	0	-	0.05	0	-	0.002		
b	0.25	0.30	0.35	0.010	0.012	0.014		
С	0.15	0.20	0.25	0.006	0.008	0.010		
D	2.92	3.00	3.08	0.115	0.118	0.121		
D1	1.75	1.87	2.00	0.069	0.074	0.079		
D2	1.07	1.20	1.32	0.042	0.047	0.052		
D3	0.20	0.25	0.30	0.008	0.010	0.012		
E	1.82	1.90	1.98	0.072	0.075	0.078		
E1	1.38	1.50	1.63	0.054	0.059	0.064		
E2	0.92	1.05	1.17	0.036	0.041	0.046		
E3	0.45	0.50	0.55	0.018	0.020	0.022		
е		0.65 BSC		0.026 BSC				
Н	0.15	0.20	0.25	0.006	0.008	0.010		
K	0.25	-	-	0.010	-	ı		
K1	0.30	-	-	0.012	-	ı		
K2	0.20	-	-	0.008	-	ı		
K3	0.20	-	-	0.008	-	ı		
L	0.30	0.35	0.40	0.012	0.014	0.016		

C14-0630-Rev. E, 21-Jul-14

Note


DWG: 5940

Revision: 21-Jul-14

• Millimeters will govern

RECOMMENDED MINIMUM PADS FOR PowerPAK® ChipFET® Single

Recommended Minimum Pads Dimensions in mm/(Inches)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.