



**TO-247** 

**PRODUCT SUMMARY** 

V<sub>DS</sub> (V)

R<sub>DS(on)</sub> (Ω)

Q<sub>qs</sub> (nC)

Q<sub>ad</sub> (nC)

Q<sub>g</sub> (Max.) (nC)

Configuration

# **Power MOSFET**

S

N-Channel MOSFET

0.40

500

150

20

80

Single

 $V_{GS} = 10 V$ 

### FEATURES

- Dynamic dV/dt Rating
- Repetitive Avalanche Rated
- Isolated Central Mounting Hole
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

### DESCRIPTION

Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because its isolated mounting hole. It also provides greater creepage distances between pins to meet the requirements of most safety specifications.

| ORDERING INFORMATION |            |
|----------------------|------------|
| Package              | TO-247     |
| Lead (Pb)-free       | IRFP450PbF |

| PARAMETER                                                         |                  |           | SYMBOL                            | LIMIT            | UNIT     |
|-------------------------------------------------------------------|------------------|-----------|-----------------------------------|------------------|----------|
| Drain-Source Voltage                                              |                  |           | V <sub>DS</sub>                   | 500              |          |
| Gate-Source Voltage                                               |                  |           | V <sub>GS</sub>                   | ± 20             | - V      |
| Continuous Drain Current $V_{CS}$ at 10 V $T_{C} = 25 \text{ °C}$ |                  | 1         | 14                                |                  |          |
| Continuous Drain Current $V_{GS}$ at 10 V $T_C = 100 \degree C$   |                  |           | ID                                | 8.7              | А        |
| Pulsed Drain Current <sup>a</sup>                                 |                  |           | I <sub>DM</sub>                   | 56               |          |
| Linear Derating Factor                                            |                  |           |                                   | 1.5              | W/°C     |
| Single Pulse Avalanche Energy <sup>b</sup>                        |                  |           | E <sub>AS</sub>                   | 760              | mJ       |
| Repetitive Avalanche Current <sup>a</sup>                         |                  |           | I <sub>AR</sub>                   | 8.7              | А        |
| Repetitive Avalanche Energy <sup>a</sup>                          |                  |           | E <sub>AR</sub>                   | 19               | mJ       |
| Maximum Power Dissipation                                         | $T_{\rm C} = 2$  | 25 °C     | PD                                | 190              | W        |
| Peak Diode Recovery dV/dt <sup>c</sup>                            |                  |           | dV/dt                             | 3.5              | V/ns     |
| Operating Junction and Storage Temperature Range                  |                  |           | T <sub>J</sub> , T <sub>stg</sub> | - 55 to + 150    | **       |
| Soldering Recommendations (Peak Temperature) for 10 s             |                  |           |                                   | 300 <sup>d</sup> | °C       |
| Mounting Torque                                                   | 6.20 or M        | 10.00*014 |                                   | 10               | lbf · in |
| Mounting Torque                                                   | 6-32 or M3 screw |           |                                   | 1.1              | N · m    |

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

- b.  $V_{DD}$  = 50 V, starting T<sub>J</sub> = 25 °C, L = 7.0 mH, R<sub>G</sub> = 25  $\Omega$ , I<sub>AS</sub> = 14 A (see fig. 12)
- c.  $I_{SD} \leq 14$  A,  $dI/dt \leq 130$  A/µs,  $V_{DD} \leq V_{DS}, \, T_J \leq 150 \ ^\circ C$

d. 1.6 mm from case

1



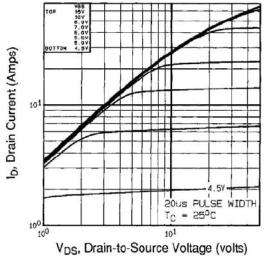
www.vishay.com

SHA)

Vishay Siliconix

| Maximum Junction-to-Ambient         R <sub>InJA</sub> -         40           Case-to-Sink, Flat, Greased Surface         R <sub>BOS</sub> 0.24         -         0.65           SPECIFICATIONS T <sub>J</sub> = 25 °C, unless otherwise noted           SPECIFICATIONS T <sub>J</sub> = 25 °C, unless otherwise noted           Specific Attions T <sub>J</sub> = 25 °C, unless otherwise noted           Static         Visit         Vos         Vos         Vos         Specific Attions         Min.         TYP.         MAX.         UNI           Gate-Source Treshold Voltage         Vos         Vos         Loss         Vos         200         -         4.00         V           Gate-Source Leakage         I coss         Vos         Vos         200         -         4.00         V           Zero Gate Voltage Drain Current         I loss         Vos         500 V. Vos         0.0         -         -         200         -         4.00         Q           Drain-Source On-State Resistance         Postern         Vos         500 V. Vos         0.0         -         -         0.40         0           Forward Transconductance         Gas         Vos         500 V. Vos         9.3         -         -         50           Input Capacitan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | THERMAL RESISTANCE RATI                         | NGS                    |                                           |                                      |                                       |          |           |                       |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|----------|-----------|-----------------------|------------------|
| Case-to-Sink, Flat, Greased Surface $R_{BLG}$ $0.24$ $ ^{\circ}$ C/W           Maximum Junction-to-Case (Drain) $R_{BJC}$ $ 0.65$ $^{\circ}$ C/W           SPECIFICATIONS T <sub>J</sub> = 25 °C, unless otherwise noted           PARAMETER         SYMBOL         TEST CONDITIONS         Min.         TYP.         MAX.         UNI           Symmetry Coefficient         Algo to the symmetry coefficient         Algo to the symmetry coefficient           Vogs Temperature Coefficient $\Delta V_{OS} T_J$ Reference to 25 °C, lp = 1 mA $ 0.63$ $  V_{OS}$ Gate-Source Leakage         lgss $V_{OS} = V_{OS}$ , lp = 250 µA $2.0$ $ 4.0$ $V$ Zero Gate Voltage Drain Current         lbss $V_{OS} = 10 V$ $V_{OS} = 0 V$ , $V_{OS} = 0 V$ $ 2.60$ $ 2.60$ $ 2.60$ $ 2.60$ $ 2.60$ $ 2.60$ $ 2.60$ $ 2.60$ $ 2.60$ $ 2.60$ $ 2.60$ $ 2.60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PARAMETER                                       | SYMBOL                 | TYP.                                      |                                      | MAX.                                  |          |           | UNIT                  |                  |
| Maximum Junction-to-Case (Drain) $R_{B,LC}$ -       0.65         SPECIFICATIONS $T_J = 25 °C$ , unless otherwise noted       PARAMETER       SYMBOL       TEST CONDITIONS       MIN.       TYP.       MAX.       UNI         Static       Drain-Source Breakdown Voltage $V_{DS}$ $V_{CS} = 0 V$ , $I_D = 250 \mu A$ 500       -       -       V/P         Gate-Source Threshold Voltage $V_{DS}$ $V_{CS} = 0 V$ , $I_D = 14 A$ -       0.63       -       4.0       V/P         Case-Source Threshold Voltage $V_{DS}$ $V_{CS} = 0 V$ , $I_D = 14 A$ , $V_{DS} = 0 V$ -       +       100 $n^A$ Zaro Gate Voltage Drain Current $I_{DSS}$ $V_{DS} = 400 V$ , $V_{CS} = 0 V$ -       -       250 $\mu^A$ Drain-Source On-State Resistance $R_{DS(ort)}$ $V_{DS} = 10 V$ $I_D = 8.4 A^D$ 9.3       -       -       S         Dynamic       Input Capacitance $C_{Case}$ $V_{DS} = 0 V$ , $V_{DS} = 400 V$ , $I_D = 8.4 A^D$ -       -       0.404 $\Omega$ 0.10       1.16       -       2.200       -       -       0.404 $\Omega$ Drain-Source On-State Resistance $C_{DSB}$ $V_{DS} = 0 V$ , $V_{DS} = 0 V$ , $V_{DS} = 0 V$ , $V_{DS} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum Junction-to-Ambient                     | R <sub>thJA</sub>      | -                                         |                                      | 40                                    |          |           |                       |                  |
| SPECIFICATIONS T <sub>J</sub> = 25 °C, unless otherwise noted         SymBoL       TEST CONDITIONS       MIN.       TYP.       MAX.       UNI         Static         Drain-Source Breakdown Voltage       V <sub>DS</sub> V <sub>DS</sub> = 0, V, I <sub>D</sub> = 250 µA       500       -       V         Static         Drain-Source Breakdown Voltage       V <sub>DS</sub> V <sub>GS</sub> = 0, V, I <sub>D</sub> = 250 µA       2.0       -       4.0       V         Gate-Source Leakage       I/A/DS       V <sub>DS</sub> = 400 V, V <sub>OS</sub> = 0 V       -       -       2.4.0       V         Calce Source Leakage       I/A/DS       V <sub>DS</sub> = 500 V, V <sub>OS</sub> = 0 V       -       -       2.50       µA         Source Leakage       I/A/DS       V <sub>DS</sub> = 10 V       I <sub>D</sub> = 8.4 A <sup>b</sup> -       -       0.40       Ω         Parameter Cargacitance       Cress       V <sub>DS</sub> = 50 V, I <sub>D</sub> = 8.4 A <sup>b</sup> 9.3       -       -       0.40       Ω         Provint Cargacitance       Cress       V <sub>DS</sub> = 50 V, I <sub>D</sub> = 8.4 A <sup>b</sup> 9.3       -       -       0.40       Ω         Calce Source Charge       Q <sub>B</sub> <td>Case-to-Sink, Flat, Greased Surface</td> <td>R<sub>thCS</sub></td> <td>0.24</td> <td></td> <td>-</td> <td></td> <td></td> <td>°C/W</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                     | Case-to-Sink, Flat, Greased Surface             | R <sub>thCS</sub>      | 0.24                                      |                                      | -                                     |          |           | °C/W                  |                  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum Junction-to-Case (Drain)                | R <sub>thJC</sub>      | -                                         |                                      | 0.65                                  |          |           |                       |                  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                        |                                           |                                      |                                       |          |           |                       |                  |
| Static         VDS         VGS = 0 V, ID = 250 µA         500         -         -         V           Orain-Source Breakdown Voltage $\Delta D_{DS}/T_J$ Reference to 25 °C, ID = 1 mA         -         0.63         -         V/*           Gate-Source Threshold Voltage $V_{OS}$ ( $S_{S(th)}$ $V_{DS} = V_{GS}$ , ID = 250 µA         2.0         -         4.0         V           Gate-Source Leakage         IcSS $V_{OS} = 20$ V         -         -         ± 100         nA           Zero Gate Voltage Drain Current         IDSS $V_{OS} = 500$ V, $V_{OS} = 0$ V         -         -         250         µA           Forward Transconductance $R_{S(on)}$ $V_{OS} = 10$ V         ID = 8.4 A <sup>D</sup> -         -         0.400 $\Omega$ Dynamic         Input Capacitance $C_{css}$ $V_{DS} = 20$ V, $V_{DS} = 25$ V, $I_D = 8.4$ A <sup>D</sup> 9.3         -         0.400 $\Omega$ Dynamic         Input Capacitance $C_{css}$ $V_{DS} = 20$ V, $V_{CS} = 20$ V         -         -         100         10         10 </td <td><b>SPECIFICATIONS</b> <math>T_J = 25 \text{ °C}</math>, u</td> <td>nless otherwi</td> <td>se noted</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                          | <b>SPECIFICATIONS</b> $T_J = 25 \text{ °C}$ , u | nless otherwi          | se noted                                  |                                      |                                       |          |           |                       |                  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PARAMETER                                       | SYMBOL                 | TEST                                      | CONDITI                              | ONS                                   | MIN.     | TYP.      | MAX.                  | UNIT             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Static                                          |                        |                                           |                                      |                                       |          | •         | •                     |                  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drain-Source Breakdown Voltage                  | V <sub>DS</sub>        | $V_{GS} = 0$                              | V, I <sub>D</sub> = 28               | 50 µA                                 | 500      | -         | -                     | V                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V <sub>DS</sub> Temperature Coefficient         | $\Delta V_{DS}/T_{J}$  | Reference                                 | to 25 °C, I                          | <sub>D</sub> = 1 mA                   | -        | 0.63      | -                     | V/°C             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gate-Source Threshold Voltage                   | V <sub>GS(th)</sub>    | $V_{DS} = V$                              | ′ <sub>GS</sub> , I <sub>D</sub> = 2 | 50 µA                                 | 2.0      | -         | 4.0                   | V                |
| Zero Gate Voltage Drain Current         IDSS         VDS = 400 V, VGS = 0 V, TJ = 125 °C         -         -         250         µµ           Drain-Source On-State Resistance         RDS(on)         VGS = 10 V         Ib = 8.4 Ab         -         -         0.40         Q           Forward Transconductance         gfs         VDS = 50 V, Ib = 8.4 Ab         9.3         -         -         S           Dynamic         Input Capacitance         Ciss         VGS = 0 V, | Gate-Source Leakage                             |                        | V <sub>G</sub>                            | <sub>S</sub> = ± 20 \                | /                                     | -        | -         | ± 100                 | nA               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                        | V <sub>DS</sub> = 5                       | 00 V, V <sub>GS</sub>                | = 0 V                                 | -        | -         | 25                    | •                |
| Forward Transconductance $g_{fs}$ $V_{DS} = 50 V$ , $I_D = 8.4 A^b$ $9.3$ $-$ S           Dynamic         Input Capacitance $C_{iss}$ $V_{GS} = 0 V$ , $V_{DS} = 25 V$ , $f = 1.0 MHz$ , see fig. 5 $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 720$ $ 7200$ <td>Zero Gate Voltage Drain Current</td> <td>IDSS</td> <td>V<sub>DS</sub> = 400 V, V</td> <td>/<sub>GS</sub> = 0 V,</td> <td>T<sub>J</sub> = 125 °C</td> <td>-</td> <td>-</td> <td>250</td> <td>μΑ</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zero Gate Voltage Drain Current                 | IDSS                   | V <sub>DS</sub> = 400 V, V                | / <sub>GS</sub> = 0 V,               | T <sub>J</sub> = 125 °C               | -        | -         | 250                   | μΑ               |
| DynamicInput Capacitance $C_{iss}$ $V_{GS} = 0 V$ ,<br>$V_{DS} = 25 V$ ,<br>$f = 1.0 MHz$ , see fig. 5 $ 2600$ $-$ Output Capacitance $C_{rss}$ $f = 1.0 MHz$ , see fig. 5 $ 720$ $-$ Reverse Transfer Capacitance $C_{rss}$ $f = 1.0 MHz$ , see fig. 5 $ 720$ $-$ Total Gate Charge $Q_{g}$ $Q_{gs}$ $V_{GS} = 10 V$ $I_D = 14 A, V_{DS} = 400 V$ ,<br>see fig. 6 and 13b $  150$ Gate-Drain Charge $Q_{gd}$ $V_{GS} = 10 V$ $I_D = 14 A, V_{DS} = 400 V$ ,<br>see fig. 6 and 13b $   -$ Gate-Drain Charge $Q_{gd}$ $Q_{gd}$ $V_{GS} = 10 V$ $I_D = 14 A, V_{DS} = 400 V$ ,<br>see fig. 6 and 13b $   -$ Gate-Drain Charge $Q_{gd}$ $V_{GS} = 10 V$ $V_{DD} = 250 V, I_D = 14 A,$<br>$R_G = 6.2 \Omega, R_D = 17 \Omega$ , see fig. $10^{D}$ $  44$ $-$ Turn-Off Delay Time $t_q(crif)$ $R_G = 6.2 \Omega, R_D = 17 \Omega$ , see fig. $10^{D}$ $ 44$ $-$ Internal Drain Inductance $L_D$ Between lead,<br>$6 mm (0.25^{H}) frompackage and center ofdie contact 5.0-Drain-Source Body Diode Characteristics  14-Pulsed Diode Forward CurrentI_SMOSFET symbolshowing theintegral reversep - n junction diode  14-Body Diode Reverse Recovery Timet_{rr}T_J = 25 °C, I_S = 14 A, V_{GS} = 0 V^{D}  1.4V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drain-Source On-State Resistance                | R <sub>DS(on)</sub>    | V <sub>GS</sub> = 10 V                    | I <sub>D</sub>                       | = 8.4 A <sup>b</sup>                  | -        | -         | 0.40                  | Ω                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Forward Transconductance                        | <b>g</b> <sub>fs</sub> | V <sub>DS</sub> = 5                       | 0 V, I <sub>D</sub> = 8              | 3.4 A <sup>b</sup>                    | 9.3      | -         | -                     | S                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dynamic                                         |                        |                                           |                                      |                                       |          |           |                       |                  |
| Output Capacitance $C_{oss}$ $V_{DS} = 25 \text{ V}$ ,<br>f = 1.0 MHz, see fig. 5-720-pFReverse Transfer Capacitance $C_{rss}$ $f = 1.0 \text{ MHz}$ , see fig. 5-720-pFReverse Transfer Capacitance $C_{rss}$ $f = 1.0 \text{ MHz}$ , see fig. 5-340Total Gate Charge $Q_g$ Gate-Source Charge $Q_{gd}$ $V_{GS} = 10 \text{ V}$ $I_D = 14 \text{ A}$ , $V_{DS} = 400 \text{ V}$ , see fig. 6 and 13b20nCGate-Drain Charge $Q_{gd}$ $V_{GS} = 10 \text{ V}$ $I_D = 14 \text{ A}$ , $V_{DS} = 400 \text{ V}$ , see fig. 6 and 13b80Turn-On Delay Time $t_{d(on)}$ $V_{GS} = 6.2 \Omega$ , $R_D = 17 \Omega$ , see fig. 10b47Turn-Off Delay Time $t_{d(off)}$ $R_G = 6.2 \Omega$ , $R_D = 17 \Omega$ , see fig. 10b-44Internal Drain Inductance $L_D$ Between lead, 6 mm (0.25") from package and center of die contact-5.0Internal Source Inductance $L_S$ MOSFET symbol showing the integral reverse p - n junction diode14Pulsed Diode Forward Current* $I_S$ $N_{SD}$ $T_J = 25 \text{ °C}$ , $I_F = 14 \text{ A}$ , $dI/dt = 100 \text{ A/µsb}$ 1.4VBody Diode Reverse Recovery Charge $Q_{rr}$ $T_J = 25 \text{ °C}$ , $I_F = 14 \text{ A}$ , $dI/dt = 100 \text{ A/µsb}$ 4.87.2 $\mu$ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Input Capacitance                               | C <sub>iss</sub>       | $V_{DS} = 25 V$ ,                         |                                      | -                                     | 2600     | -         | pF                    |                  |
| Reverse Iranster Capacitance $C_{rss}$ -340-Total Gate Charge $Q_g$ Gate-Source Charge $Q_{gs}$ Gate-Drain Charge $Q_{gd}$ Turn-On Delay Time $t_{d(on)}$ Rise Time $t_r$ Turn-Off Delay Time $t_{d(off)}$ Fall Time $t_r$ Internal Drain Inductance $L_D$ Between lead,<br>6 mm (0.25°) from<br>package and center of<br>die contactInternal Source Inductance $L_S$ MOSFET symbol<br>showing the<br>integral reverse<br>$p - n$ junction diodePulsed Diode Forward Currenta $I_S$ Body Diode Voltage $V_{SD}$ Turn-Spice Recovery Time $t_{rr}$ Turn-Spice Recovery Charge $Q_{rr}$ Turn-Spice Recovery Charge $Q_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Output Capacitance                              | C <sub>oss</sub>       |                                           |                                      | -                                     | 720      | -         |                       |                  |
| $ \begin{array}{c c c c c c c } \hline Total Gate Charge & Q_g & \\ \hline Gate-Source Charge & Q_{gs} & \\ \hline Gate-Drain Charge & Q_{gd} & \\ \hline U_{GS} = 10 \ V & \\ \hline V_{GS} = 10 \ V & \\ \hline I_{D} = 14 \ A, \ V_{DS} = 400 \ V, \\ \hline see \ fig. \ 6 \ and \ 13^{D} & \hline & - & 20 & \\ \hline - & - & 80 & \\ \hline & - & - & 80 & \\ \hline & - & - & 80 & \\ \hline & - & - & 80 & \\ \hline & - & - & 80 & \\ \hline & - & - & 80 & \\ \hline & - & - & 80 & \\ \hline & - & - & 17 & - & \\ \hline & - & 47 & - & \\ \hline & - & 44 & - & \\ \hline & - & - & 44 & - & \\ \hline & - & - & 44 & - & \\ \hline & - & - & 44 & - & \\ \hline & - & - & 44 & - & \\ \hline & - & - & 44 & - & \\ \hline & - & - & 44 & - & \\ \hline & - & - & 44 & - & \\ \hline & - & - & 44 & - & \\ \hline & - & - & - & - & 14 & \\ \hline & - & - & 13 & - & \\ \hline & - & - & 14 & \\ \hline & - & - & - & 14 & \\ \hline & - & - & - & - & 14 & \\ \hline & - & - & - & - & 14 & \\ \hline & - & - & - & - & - & 14 & \\ \hline & - & - & - & - & - & - & - & \\ \hline & - & - & - & - & - & - & - & - & \\ \hline & - & - & - & - & - & - & - & - & - &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reverse Transfer Capacitance                    | C <sub>rss</sub>       | f = 1.0                                   | MHz, see                             | fig. 5                                | -        | 340       | -                     |                  |
| Gate-Source Charge $d_{gs}$ $V_{GS} = 10$ $^{\circ}$ see fig. 6 and 13b $^{\circ}$ <td>Total Gate Charge</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>150</td> <td></td>                                                                                                                                                | Total Gate Charge                               |                        |                                           |                                      |                                       | -        | -         | 150                   |                  |
| Gate-Drain Charge $Q_{gd}$ $  80$ Turn-On Delay Time $t_{d(on)}$ Rise Time $t_r$ Turn-Off Delay Time $t_{d(off)}$ Fall Time $t_f$ Fall Time $t_f$ Internal Drain Inductance $L_D$ Internal Source Inductance $L_S$ Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIsMOSFET symbol<br>showing the<br>integral reverse<br>$p - n$ junction diodePulsed Diode Forward CurrentaIsMost Source Recovery Time $t_r$ Turn-Off Delay Time $t_r$ Turn-Off Delay Time $T_J = 25  ^\circ C$ , $I_S = 14 A$ , $V_{GS} = 0  V^b$ Turn-Off Delay Time $t_r$ Turn-Off Delay Time $t_r$ Turn-Off Delay Time $t_r$ Fall Time $t_r$ Internal Drain Inductance $L_S$ Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIsMOSFET symbol<br>showing the<br>integral reverse<br>$p - n$ junction diodeTurn-Off Delay Diode Forward CurrentaIsMost Subscription $-$ Turn-Subscription $-$ Turn-Sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gate-Source Charge                              | Q <sub>gs</sub>        | V <sub>GS</sub> = 10 V                    |                                      |                                       | -        | -         | 20                    | nC               |
| Rise Time $t_r$ $V_{DD} = 250 \text{ V}, \text{ I}_D = 14 \text{ A}, \text{ R}_G = 6.2 \Omega, \text{ R}_D = 17 \Omega, \text{ see fig. 10^b}$ $ 47$ $  92$ $  44$ $  92$ $  44$ $  44$ $  44$ $  44$ $  44$ $  44$ $  44$ $  44$ $  44$ $  44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $                                                              -$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gate-Drain Charge                               |                        |                                           | 300 11                               | g. o and to                           | -        | -         | 80                    |                  |
| Rise Time $t_r$ $V_{DD} = 250 \text{ V}, \text{ I}_D = 14 \text{ A}, \text{ R}_G = 6.2 \Omega, \text{ R}_D = 17 \Omega, \text{ see fig. 10^b}$ $ 47$ $  92$ $  44$ $  92$ $  44$ $  44$ $  44$ $  44$ $  44$ $  44$ $  44$ $  44$ $  44$ $  44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $   44$ $                                                              -$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Turn-On Delay Time                              | t <sub>d(on)</sub>     |                                           |                                      |                                       | -        | 17        | -                     |                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rise Time                                       |                        | -<br>V 2                                  | 50 V I                               | 1/Δ                                   | -        | 47        | -                     |                  |
| Fall Time $t_f$ -44-Internal Drain Inductance $L_D$ Between lead,<br>6 mm (0.25") from<br>package and center of<br>die contact-5.0-Internal Source Inductance $L_S$ Between lead,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Turn-Off Delay Time                             | t <sub>d(off)</sub>    | $R_{\rm G} = 6.2 \ \Omega, R_{\rm H}$     | $b_{\rm D} = 17 \ \Omega,$           | see fig. 10 <sup>b</sup>              | -        | 92        | -                     | ns               |
| Internal Drain HuddetanceLp6 mm (0.25") from<br>package and center of<br>die contact-3.0nInternal Source InductanceLs6 mm (0.25") from<br>package and center of<br>die contact-13-nDrain-Source Body Diode CharacteristicsMOSFET symbol<br>showing the<br>integral reverse<br>p - n junction diode-14APulsed Diode Forward CurrentaIsMOSFET symbol<br>showing the<br>integral reverse<br>p - n junction diode14ABody Diode VoltageV_SDT_J = 25 °C, I_S = 14 A, V_{GS} = 0 V^b1.4VBody Diode Reverse Recovery TimetrrT_J = 25 °C, I_F = 14 A, dI/dt = 100 A/µs^b-540810nsContinuous Cource ChargeQrrContinue ChargeContinue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fall Time                                       |                        |                                           |                                      |                                       | -        | 44        | -                     |                  |
| Internal Source InductanceLSpackage and center of<br>die contact-13-Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentISMOSFET symbol<br>showing the<br>integral reverse<br>p - n junction diode14APulsed Diode Forward CurrentaISMTJ = 25 °C, IS = 14 A, VGS = 0 Vb56ABody Diode Reverse Recovery TimetrrTJ = 25 °C, IS = 14 A, dI/dt = 100 A/µsb-540810nsBody Diode Reverse Recovery ChargeQrrTJ = 25 °C, IF = 14 A, dI/dt = 100 A/µsb-540810ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Internal Drain Inductance                       | L <sub>D</sub>         |                                           | m                                    |                                       | -        | 5.0       | -                     |                  |
| Continuous Source-Drain Diode CurrentIsMOSFET symbol<br>showing the<br>integral reverse<br>p - n junction diode-14APulsed Diode Forward CurrentaIsMIsMT_J = 25 °C, I_S = 14 A, V_{GS} = 0 V^b56Body Diode VoltageV_{SD}T_J = 25 °C, I_S = 14 A, V_{GS} = 0 V^b1.4VBody Diode Reverse Recovery Time $t_{rr}$ $T_J = 25 °C, I_F = 14 A, dI/dt = 100 A/\mu s^b$ -540810nsBody Diode Reverse Recovery Charge $Q_{rr}$ 4.87.2 $\mu C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Internal Source Inductance                      | L <sub>S</sub>         |                                           | nter of                              |                                       | -        | 13        | -                     |                  |
| Continuous Source-Drain Diode CurrentIs<br>is<br>showing the<br>integral reverse<br>p - n junction diodeshowing the<br>integral reverse<br>p - n junction diode14APulsed Diode Forward CurrentaIs<br>Is<br>MIs<br>P - n junction diodeIs<br>P - n junction diode14ABody Diode VoltageVsDTJ = 25 °C, Is = 14 A, VGS = 0 Vb1.4VBody Diode Reverse Recovery Timetrr<br>TJ = 25 °C, IF = 14 A, dI/dt = 100 A/µsb-540810ns-4.87.2µC4.87.2µC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drain-Source Body Diode Characteristic          | s                      |                                           |                                      |                                       |          |           |                       |                  |
| Pulsed Diode Forward Currenta $I_{SM}$ Integral reverse<br>p - n junction diode $   56$ Body Diode Voltage $V_{SD}$ $T_J = 25 \ ^{\circ}C$ , $I_S = 14 \ A$ , $V_{GS} = 0 \ V^b$ $  1.4 \ V$ Body Diode Reverse Recovery Time $t_{rr}$ $T_J = 25 \ ^{\circ}C$ , $I_F = 14 \ A$ , $dI/dt = 100 \ A/\mu s^b$ $ 540 \ 810 \ ns$ Body Diode Reverse Recovery Charge $Q_{rr}$ $T_J = 25 \ ^{\circ}C$ , $I_F = 14 \ A$ , $dI/dt = 100 \ A/\mu s^b$ $ 4.8 \ 7.2 \ \mu C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Continuous Source-Drain Diode Current           | I <sub>S</sub>         | showing the                               |                                      | -                                     | -        | 14        |                       |                  |
| Body Diode Reverse Recovery Time $t_{rr}$ $T_J = 25 \ ^{\circ}C$ , $I_F = 14 \ A$ , $dI/dt = 100 \ A/\mu s^b$ -540810nsBody Diode Reverse Recovery Charge $Q_{rr}$ $T_J = 25 \ ^{\circ}C$ , $I_F = 14 \ A$ , $dI/dt = 100 \ A/\mu s^b$ -4.87.2 $\mu C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pulsed Diode Forward Current <sup>a</sup>       | I <sub>SM</sub>        |                                           | ode                                  |                                       | -        | -         | 56                    |                  |
| $T_{J} = 25 \text{ °C}, I_{F} = 14 \text{ A}, dI/dt = 100 \text{ A}/\mu\text{s}^{b}$ Body Diode Reverse Recovery Charge $Q_{rr}$ $- 4.8  7.2  \mu\text{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Body Diode Voltage                              | V <sub>SD</sub>        | T <sub>J</sub> = 25 °C, I                 | <sub>S</sub> = 14 A, '               | V <sub>GS</sub> = 0 V <sup>b</sup>    | -        | -         | 1.4                   | V                |
| Body Diode Reverse Recovery Charge Q <sub>rr</sub> - 4.8 7.2 µC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Body Diode Reverse Recovery Time                | t <sub>rr</sub>        | T _ 25 °C                                 | -/الم 1/۸                            | H - 100 4 /                           | -        | 540       | 810                   | ns               |
| Forward Turn-On Time ton Intrinsic turn-on time is negligible (turn-on is dominated by L <sub>S</sub> and L <sub>D</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Body Diode Reverse Recovery Charge              | Q <sub>rr</sub>        | $I_{\rm J} = 25  {}^{-}$ U, $I_{\rm F} =$ | 14 A, al/c                           | $a = 100 \text{ A/} \mu \text{s}^{5}$ | -        | 4.8       | 7.2                   | μC               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Forward Turn-On Time                            | t <sub>on</sub>        | Intrinsic turn                            | -on time i                           | s negligible (turn                    | on is do | minated b | by L <sub>S</sub> and | L <sub>D</sub> ) |

#### Notes


a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

b. Pulse width  $\leq$  300 µs; duty cycle  $\leq$  2 %

2



## TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted





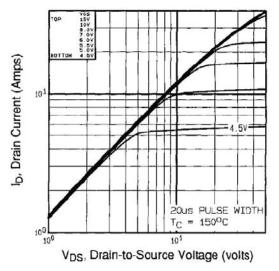



Fig. 2 - Typical Output Characteristics,  $T_C = 150$  °C

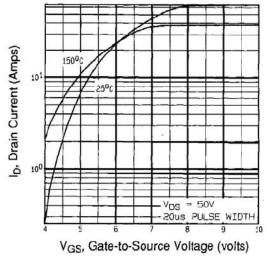



Fig. 3 - Typical Transfer Characteristics

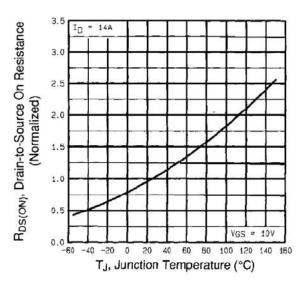



Fig. 4 - Normalized On-Resistance vs. Temperature



IRFP450

## Vishay Siliconix

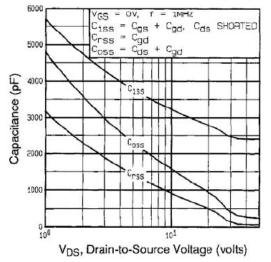



Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

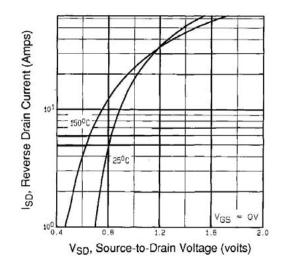



Fig. 7 - Typical Source-Drain Diode Forward Voltage

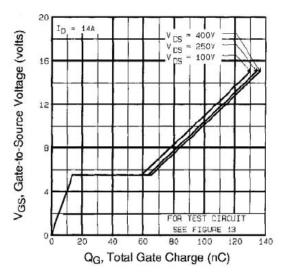



Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

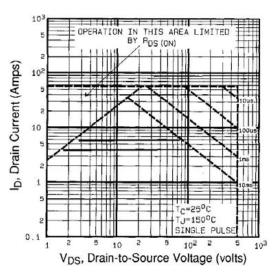



Fig. 8 - Maximum Safe Operating Area



# IRFP450

## Vishay Siliconix



Fig. 9 - Maximum Drain Current vs. Case Temperature

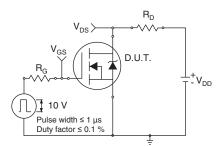



Fig. 10a - Switching Time Test Circuit

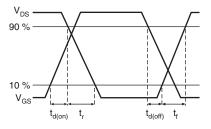
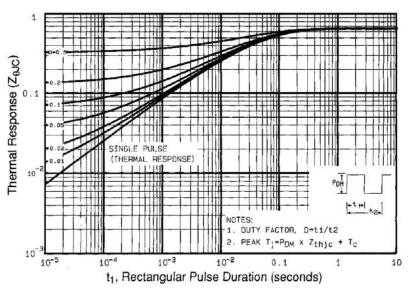
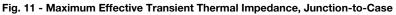





Fig. 10b - Switching Time Waveforms





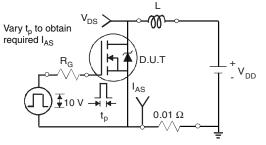



Fig. 12a - Unclamped Inductive Test Circuit

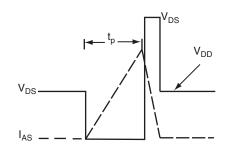



Fig. 12b - Unclamped Inductive Waveforms

S22-0058-Rev. B, 31-Jan-2022

5

Document Number: 91233

For technical questions, contact: <u>hvmos.techsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

## **IRFP450**





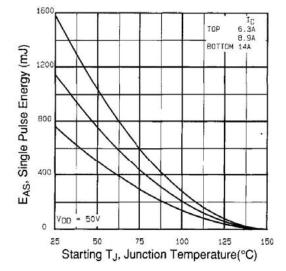



Fig. 12c - Maximum Avalanche Energy vs. Drain Current

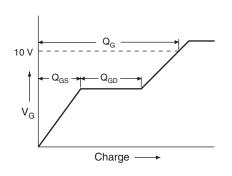



Fig. 13a - Basic Gate Charge Waveform

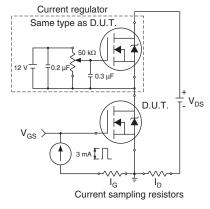
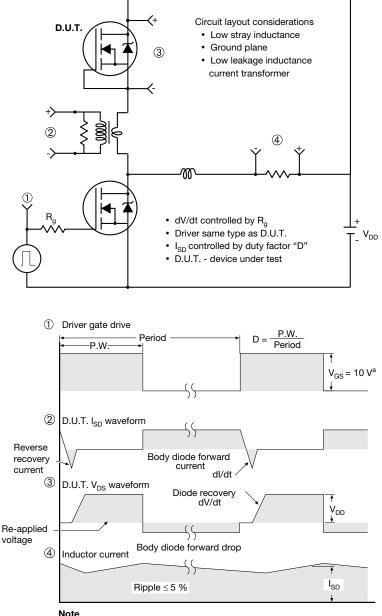
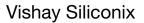




Fig. 13b - Gate Charge Test Circuit





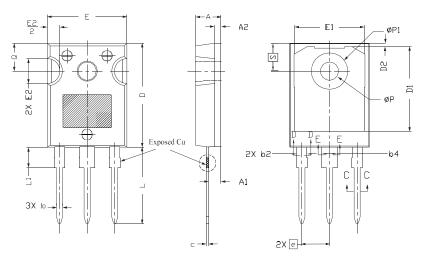
### Peak Diode Recovery dV/dt Test Circuit




a.  $V_{GS}$  = 5 V for logic level devices

Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91233.


7





**TO-247AC (High Voltage)** 

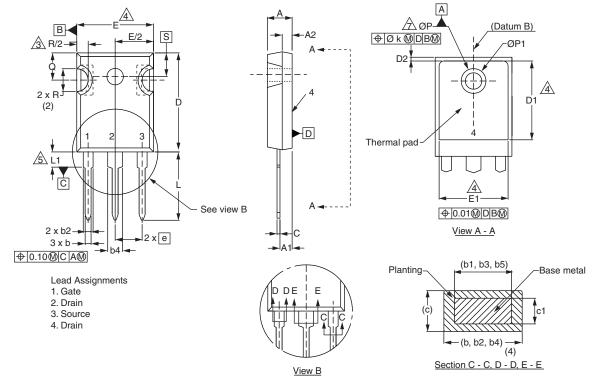
### VERSION 1: FACILITY CODE = 9





| ( |  |
|---|--|
|   |  |

|      | М     | ILLIMETERS |       |       |
|------|-------|------------|-------|-------|
| DIM. | MIN.  | NOM.       | MAX.  | NOTES |
| А    | 4.83  | 5.02       | 5.21  |       |
| A1   | 2.29  | 2.41       | 2.55  |       |
| A2   | 1.17  | 1.27       | 1.37  |       |
| b    | 1.12  | 1.20       | 1.33  |       |
| b1   | 1.12  | 1.20       | 1.28  |       |
| b2   | 1.91  | 2.00       | 2.39  | 6     |
| b3   | 1.91  | 2.00       | 2.34  |       |
| b4   | 2.87  | 3.00       | 3.22  | 6, 8  |
| b5   | 2.87  | 3.00       | 3.18  |       |
| С    | 0.40  | 0.50       | 0.60  | 6     |
| c1   | 0.40  | 0.50       | 0.56  |       |
| D    | 20.40 | 20.55      | 20.70 | 4     |


|      |       | MILLIMETERS | S     |       |
|------|-------|-------------|-------|-------|
| DIM. | MIN.  | NOM.        | MAX.  | NOTES |
| D1   | 16.46 | 16.76       | 17.06 | 5     |
| D2   | 0.56  | 0.66        | 0.76  |       |
| E    | 15.50 | 15.70       | 15.87 | 4     |
| E1   | 13.46 | 14.02       | 14.16 | 5     |
| E2   | 4.52  | 4.91        | 5.49  | 3     |
| е    |       | 5.46 BSC    |       |       |
| L    | 14.90 | 15.15       | 15.40 |       |
| L1   | 3.96  | 4.06        | 4.16  | 6     |
| ØР   | 3.56  | 3.61        | 3.65  | 7     |
| Ø P1 |       | 7.19 ref.   |       |       |
| Q    | 5.31  | 5.50        | 5.69  |       |
| S    |       | 5.51 BSC    |       |       |

#### Notes

- <sup>(1)</sup> Package reference: JEDEC<sup>®</sup> TO247, variation AC
- (2) All dimensions are in mm
- <sup>(3)</sup> Slot required, notch may be rounded
- <sup>(4)</sup> Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm per side. These dimensions are measured at the outermost extremes of the plastic body
- <sup>(5)</sup> Thermal pad contour optional with dimensions D1 and E1
- (6) Lead finish uncontrolled in L1
- (7) Ø P to have a maximum draft angle of 1.5° to the top of the part with a maximum hole diameter of 3.91 mm
- (8) Dimension b2 and b4 does not include dambar protrusion. Allowable dambar protrusion shall be 0.1 mm total in excess of b2 and b4 dimension at maximum material condition

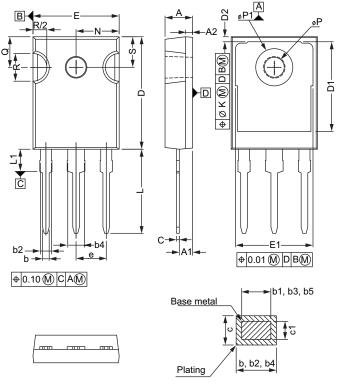


## VERSION 2: FACILITY CODE = Y



|      | MILLIN | IETERS |       |
|------|--------|--------|-------|
| DIM. | MIN.   | MAX.   | NOTES |
| A    | 4.58   | 5.31   |       |
| A1   | 2.21   | 2.59   |       |
| A2   | 1.17   | 2.49   |       |
| b    | 0.99   | 1.40   |       |
| b1   | 0.99   | 1.35   |       |
| b2   | 1.53   | 2.39   |       |
| b3   | 1.65   | 2.37   |       |
| b4   | 2.42   | 3.43   |       |
| b5   | 2.59   | 3.38   |       |
| С    | 0.38   | 0.86   |       |
| c1   | 0.38   | 0.76   |       |
| D    | 19.71  | 20.82  |       |
| D1   | 13.08  | -      |       |

|      | MILLIN | IETERS |       |
|------|--------|--------|-------|
| DIM. | MIN.   | MAX.   | NOTES |
| D2   | 0.51   | 1.30   |       |
| E    | 15.29  | 15.87  |       |
| E1   | 13.72  | -      |       |
| е    | 5.46   | BSC    |       |
| Øk   | 0.2    | 254    |       |
| L    | 14.20  | 16.25  |       |
| L1   | 3.71   | 4.29   |       |
| ØР   | 3.51   | 3.66   |       |
| Ø P1 | -      | 7.39   |       |
| Q    | 5.31   | 5.69   |       |
| R    | 4.52   | 5.49   |       |
| S    | 5.51   | BSC    |       |
|      |        |        |       |


#### Notes

- <sup>(1)</sup> Dimensioning and tolerancing per ASME Y14.5M-1994
- <sup>(2)</sup> Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- <sup>(4)</sup> Thermal pad contour optional with dimensions D1 and E1
- <sup>(5)</sup> Lead finish uncontrolled in L1
- <sup>(6)</sup> Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- <sup>(7)</sup> Outline conforms to JEDEC outline TO-247 with exception of dimension c

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



### VERSION 3: FACILITY CODE = N



|      | MILLIN | IETERS |      | MILLIN | <b>IETERS</b> |
|------|--------|--------|------|--------|---------------|
| DIM. | MIN.   | MAX.   | DIM. | MIN.   | MAX           |
| А    | 4.65   | 5.31   | D2   | 0.51   | 1.35          |
| A1   | 2.21   | 2.59   | E    | 15.29  | 15.87         |
| A2   | 1.17   | 1.37   | E1   | 13.46  | -             |
| b    | 0.99   | 1.40   | e    | 5.46   | BSC           |
| b1   | 0.99   | 1.35   | k    | 0.:    | 254           |
| b2   | 1.65   | 2.39   | L    | 14.20  | 16.10         |
| b3   | 1.65   | 2.34   | L1   | 3.71   | 4.29          |
| b4   | 2.59   | 3.43   | N    | 7.62   | BSC           |
| b5   | 2.59   | 3.38   | Р    | 3.56   | 3.66          |
| С    | 0.38   | 0.89   | P1   | -      | 7.39          |
| c1   | 0.38   | 0.84   | Q    | 5.31   | 5.69          |
| D    | 19.71  | 20.70  | R    | 4.52   | 5.49          |
| D1   | 13.08  | -      | S    | 5.51   | BSC           |

Notes

<sup>(1)</sup> Dimensioning and tolerancing per ASME Y14.5M-1994

<sup>(2)</sup> Contour of slot optional

(3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body

<sup>(4)</sup> Thermal pad contour optional with dimensions D1 and E1

<sup>(5)</sup> Lead finish uncontrolled in L1

<sup>(6)</sup> Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")



Vishay

# Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jul-2024