Power MOSFET

−12 V, −4.3 A, µCOOL[™] Dual P–Channel, 2x2 mm, WDFN package

Features

- WDFN 2x2 mm Package with Exposed Drain Pads for Excellent Thermal Conduction
- Lowest RDS(on) in 2x2 mm Package
- Footprint Same as SC-88 Package
- Low Profile (<0.8 mm) for Easy Fit in Thin Environments
- Bidirectional Current Flow with Common Source Configuration
- These are Pb–Free Devices

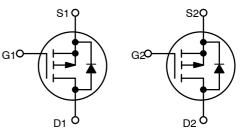
Applications

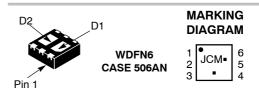
- Optimized for Battery and Load Management Applications in Portable Equipment
- Li Ion Battery Charging and Protection Circuits
- Dual High Side Load Switch

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Param	Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	-12	V
Gate-to-Source Voltage	e		V _{GS}	±8.0	V
Continuous Drain	Steady	T _J = 25°C	I _D	-3.5	А
Current (Note 1)	State	$T_J = 85^{\circ}C$		-2.5	
	t ≤ 5 s	T _J = 25°C		-4.3	
Power Dissipation (Note 1)	Steady State	T _J = 25°C	PD	1.5	W
	t ≤ 5 s	, ,		2.3	
Continuous Drain		T _J = 25°C	I _D	-2.4	А
Current (Note 2)	Steady	$T_J = 85^{\circ}C$		-1.7	
Power Dissipation (Note 2)	State	$T_J = 25^{\circ}C$	PD	0.7	W
Pulsed Drain Current	t _p = 10 μs		I _{DM}	-20	А
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diode) (Note 2)			۱ _S	-1.5	А
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

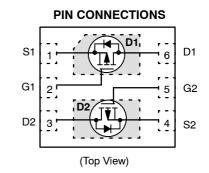
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface Mounted on FR4 Board using the minimum recommended pad size of 30 mm², 2 oz. Cu.


ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
–12 V	60 mΩ @ −4.5 V	–3.0 A
	85 mΩ @ –2.5 V	–3.0 A
	110 mΩ @ –1.8 V	–0.7 A
	140 mΩ @ –1.5 V	–0.5 A
	190 mΩ @ −1.3 V	–0.2 A
	230 mΩ @ –1.2 V	–0.2 A



P-CHANNEL MOSFET P-CHANNEL MOSFET

JC = Specific Device Code

- M = Date Code
- = Pb-Free Package
- (Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Мах	Unit
SINGLE OPERATION (SELF-HEATED)			
Junction-to-Ambient - Steady State (Note 3)	$R_{ extsf{ heta}JA}$	83	
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{ extsf{ heta}JA}$	177	°C/W
Junction-to-Ambient – t \leq 5 s (Note 3)	$R_{ hetaJA}$	54	
DUAL OPERATION (EQUALLY HEATED)			
Junction-to-Ambient - Steady State (Note 3)	$R_{ extsf{ heta}JA}$	58	
Junction-to-Ambient - Steady State Min Pad (Note 4)	R _{0JA}	133	°C/W

40

1.5

12.2

Ω

 $\mathsf{R}_{\theta \mathsf{J}\mathsf{A}}$ Junction-to-Ambient $-t \le 5$ s (Note 3)

Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
Surface Mounted on FR4 Board using the minimum recommended pad size (30 mm², 2 oz Cu).

MOSFET ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V$, $I_D = -250 \mu A$		-12			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	$I_D = -250 \ \mu\text{A}$, Ref to 25°C			-7.0		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}		$T_J = 25^{\circ}C$			-1.0	μA
		V_{DS} = -12 V, V_{GS} = 0 V	T _J = 85°C			-10	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±	8.0 V			±100	nA
ON CHARACTERISTICS (Note 5)							-
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = -250 \ \mu A$		-0.35	-0.6	-0.8	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				2.4		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = -4.5, I_D = -3.0 \text{ A}$ $V_{GS} = -2.5, I_D = -3.0 \text{ A}$ $V_{GS} = -1.8, I_D = -0.7 \text{ A}$ $V_{GS} = -1.5, I_D = -0.5 \text{ A}$			60	90	mΩ
					85	120	
					110	150	
					140	200	
	$V_{GS} = -1.3$, $I_D = -0.2$ A).2 A		190		
		$V_{GS} = -1.2, I_D = -0.000$).2 A		230		
Forward Transconductance	9 _{FS}	$V_{DS} = -10$ V, $I_{D} = -3.0$ A			6.0		S
CHARGES, CAPACITANCES AND GA	ATE RESISTAN	CE					
Input Capacitance	C _{ISS}				467		pF
Output Capacitance	C _{OSS}	V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = -6.0 V			125		1
Reverse Transfer Capacitance	C _{RSS}				79		1
Total Gate Charge	Q _{G(TOT)}				5.5	8.0	nC
Threshold Gate Charge	Q _{G(TH)}	V_{GS} = -4.5 V, V_{DS} = -6.0 V, I_D = -3.0 A			0.3		1
Gate-to-Source Charge	Q _{GS}				0.8		1

5. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.

Gate-to-Drain Charge

Gate Resistance

6. Switching characteristics are independent of operating junction temperatures.

 Q_{GD} R_G

MOSFET ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS	6 (Note 6)						-
Turn-On Delay Time	t _{d(ON)}	V_{GS} = -4.5 V, V_{DD} = -6.0 V, I _D = -3.0 A, R _G = 2.0 Ω			6.6		ns
Rise Time	t _r				12.3		
Turn-Off Delay Time	t _{d(OFF)}				14		
Fall Time	t _f				16.2		
DRAIN-SOURCE DIODE CHARA	CTERISTICS	-					-
Forward Recovery Voltage	V _{SD}	$T_{\rm J} = 25^{\circ}{\rm C}$			-0.7	-1.0	V
		$V_{GS} = 0 \text{ V}, \text{ I}_{S} = -1.0 \text{ A}$ $T_{J} = 85^{\circ}\text{C}$		-0.65			
Reverse Recovery Time	t _{RR}		•		23	45	ns
Charge Time	t _a	V_{GS} = 0 V, d_{ISD}/d_t = 100 A/µs, I_S = –1.0 A			8.0		
Discharge Time	t _b				15		

10

20

nC

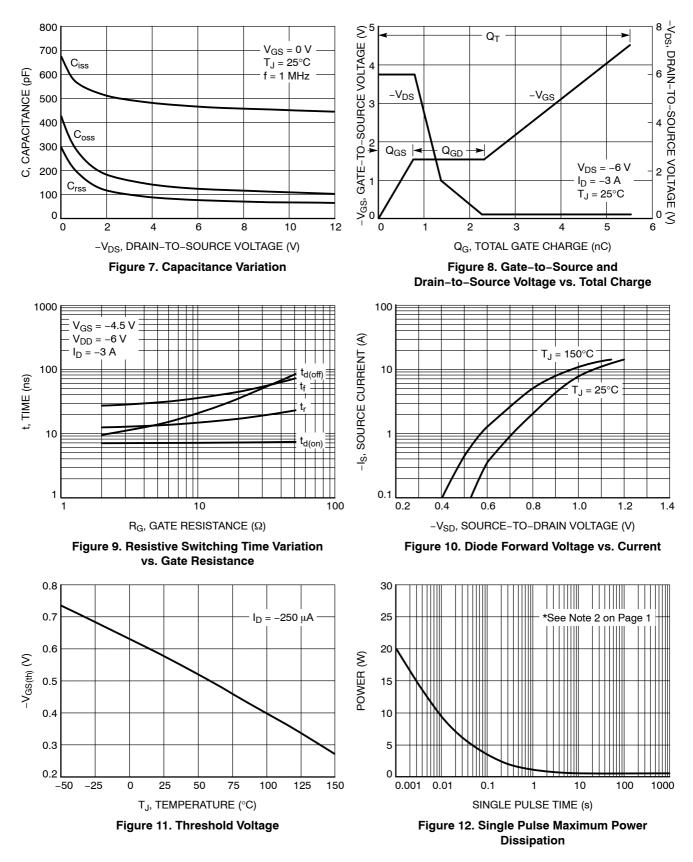
5. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%. 6. Switching characteristics are independent of operating junction temperatures.

tb $\mathsf{Q}_{\mathsf{R}\mathsf{R}}$

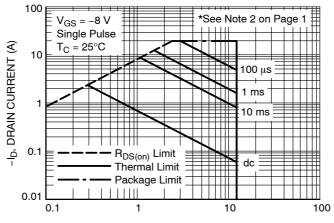
ORDERING INFORMATION

Reverse Recovery Time

Device	Package	Shipping [†]
NTLJD2104PTBG	WDFN6 (Pb-Free)	3000 / Tape & Reel
NTLJD2104PTAG	WDFN6 (Pb-Free)	3000 / Tape & Reel

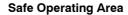

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

14 10 $V_{GS} = -4.5 \text{ V to } -3 \text{ V}$ -2.5 V $V_{DS} = -5.0 V$ 12 -I_D, DRAIN CURRENT (A) -ID, DRAIN CURRENT (A) 8.0 10 6.0 -2.0 V 8.0 –1.8 V 6.0 4.0 TJ = 25°୍C 4.0 -1.5 V 2.0 2.0 T_J = 125°C 12V T_J = −55°C 0 0 0.5 2.0 2.5 3.0 3.5 4.0 0 1.0 1.5 4.5 5.0 0.5 0.75 1.0 1.25 1.5 1.75 2.0 -V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) -V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Figure 1. On-Region Characteristics **Figure 2. Transfer Characteristics** RDS(on), DRAIN-TO-SOURCE RESISTANCE (2) R_{DS(on)}, DRAIN-TO-SOURCE RESISTANCE (Q) 0.20 0.50 V_{GS} = -1.5 V -1.8 V –2.0 V 0.45 T_J = 25°C 0.18 $T_J = 25^{\circ}C$ $I_{D} = -3 A$ 0.40 0.16 0.35 0.14 0.30 0.12 0.25 0.10 0.20 0.08 0.15 –2.5 V 0.06 0.10 0.04 0.05 -4.5 V 0.02 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 2.0 4.0 6.0 8.0 10 -VGS, GATE VOLTAGE (V) -ID, DRAIN CURRENT (A) Figure 3. On-Resistance vs. Gate-to-Source Figure 4. On-Resistance vs. Drain Current and Voltage **Gate Voltage** 10,000 1.5 $T_{J} = 150^{\circ}C$ $V_{GS} = -4.5 V$ R_{DS(on)}, NORMALIZED DRAIN-TO-SOURCE RESISTANCE (Ω) 1.4 I_D = -3 A 1.3 IDSS, LEAKAGE (nA) 1.2 1.1 1.0 T_J = 125°C 0.9 0.8 0.7 1000 -50 -25 25 50 75 100 125 150 2 5 6 7 8 10 11 12 0 3 4 9 1 T, JUNCTION TEMPERATURE (°C) -V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) Figure 5. On-Resistance Variation with Figure 6. Drain-to-Source Leakage Current Temperature vs. Voltage


TYPICAL CHARACTERISTICS

http://onsemi.com

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

-V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 13. Maximum Rated Forward Biased

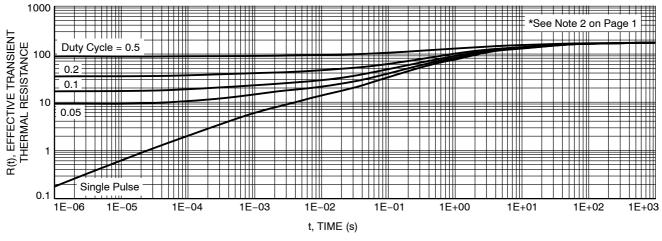
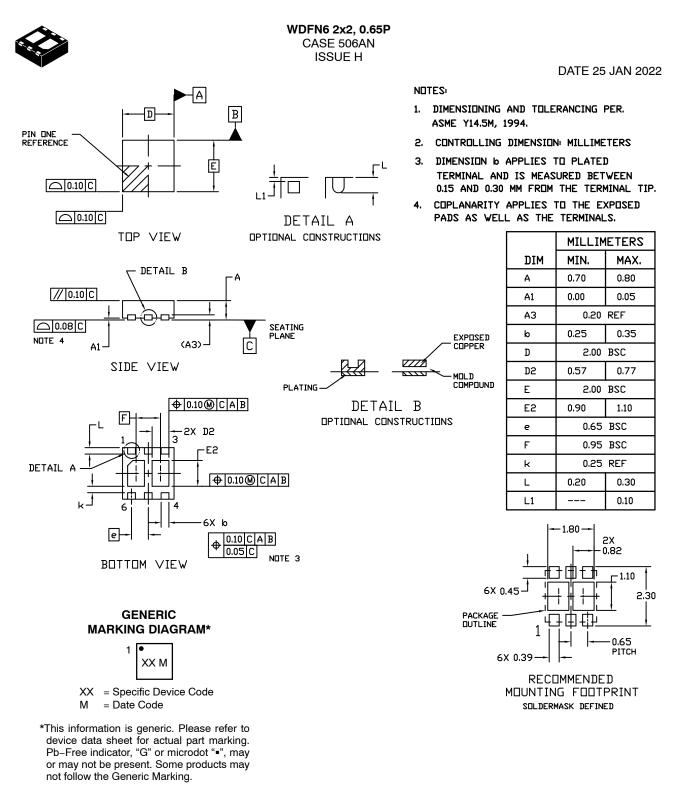



Figure 14. FET Thermal Response

 μCool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

onsemi

DOCUMENT NUMBER:	98AON20861D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	WDFN6 2x2, 0.65P		PAGE 1 OF 1			

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>