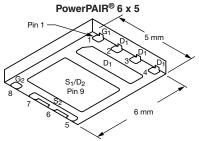
New Product

SiZ918DT

RoHS

COMPLIANT

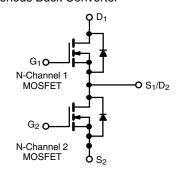

HALOGEN

FREE

Vishay Siliconix

Dual N-Channel 30 V (D-S) MOSFETs

PRODUCT SUMMARY						
	V _{DS} (V)	R _{DS(on)} (Ω) (Max.)	I _D (A)	Q _g (Typ.)		
Channel-1	30	0.0120 at V _{GS} = 10 V	16 ^a	6.8 nC		
Channel-T	30	0.0145 at V _{GS} = 4.5 V	16 ^a	0.0 110		
Channel-2	20	0.0037 at V _{GS} = 10 V	28 ^a	32 nC		
Ghannel-2	30	0.0045 at V _{GS} = 4.5 V	28 ^a	32 110		



FEATURES

- TrenchFET[®] Power MOSFETs
- 100 $\%~\text{R}_{\rm g}$ and UIS Tested
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Notebook System Power
- POL Synchronous Buck Converter

Ordering Information: SiZ918DT-T1-GE3 (Lead (Pb)-free and Halogen-free)

Parameter		Symbol	Channel-1	Channel-2	Unit	
Drain-Source Voltage		V _{DS}	30		V	
Gate-Source Voltage	V _{GS}	±				
	T _C = 25 °C		16 ^a	28 ^a		
Continuous Drain Current (T 150 °C)	T _C = 70 °C		16 ^a	28 ^a		
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	Ι _D	14.3 ^{b, c}	26 ^{a, b, c}		
	T _A = 70 °C		11.4 ^{b, c}	21 ^{a, b, c}	۸	
Pulsed Drain Current (t = 300 µs)		I _{DM}	50	110	A	
Continuous Source Drain Diode Current	T _C = 25 °C	- I _S	16 ^a	28 ^a		
Continuous Source Drain Diode Current	T _A = 25 °C		3.4 ^{b, c}	4.3 ^{b, c}		
Single Pulse Avalanche Current L = 0.1 mH		I _{AS}	18	35		
Single Pulse Avalanche Energy		E _{AS}	16	61	mJ	
	T _C = 25 °C		29	100		
Maximum Power Dissipation	T _C = 70 °C	Pn	18	64	w	
	T _A = 25 °C	۲D	4.2 ^{b, c}	5.2 ^{b, c}	vv	
	T _A = 70 °C		2.7 ^{b, c}	3.3 ^{b, c}		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		- °C	
Soldering Recommendations (Peak Temperature) ^{d, e}			260			

THERMAL RESISTANCE RATINGS

Parameter			Char	nel-1	Chan	nel-2	
		Symbol	Тур.	Max.	Тур.	Max.	Unit
Maximum Junction-to-Ambient ^{b, f}	t ≤ 10 s	R _{thJA}	24	30	19	24	°C/W
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	3.4	4.3	1	1.25	0/11

Notes:

a. Package limited.

b. Surface mounted on 1" x 1" FR4 board.

c. t = 10 s.

d. See solder profile (www.vishay.com/doc?73257). The PowerPAIR is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.

Maximum under steady state conditions is 65 °C/W for channel-1 and 55 °C/W for channel-2. f.

Document Number: 63783 For more information please contact: pmostechsupport@vishav.com www.vishav.com

S12-0543 Rev. A, 12-Mar-12

Vishay Siliconix

Parameter	Symbol	Test Conditions		Min.	Тур.	Max.	Unit	
Static				I				
		$V_{GS} = 0 V, I_{D} = 250 \mu A$	Ch-1	30				
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 V$, $I_{D} = 250 \mu A$	Ch-2	30			V	
	N/ (T	I _D = 250 μA	μA Ch-1 33		33			
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA	Ch-2		37			
V Torres errot une Os efficient	м т	I _D = 250 μA	Ch-1		- 5		mV/°C	
$V_{GS(th)}$ Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	Ch-2		- 7.5			
Cata Threehold Valtage	N/	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	Ch-1	1		2.2	v	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	Ch-2	1.2		2.2	v	
Gate Source Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 20 V$	Ch-1			± 100	nA	
	'GSS		Ch-2			± 100		
		$V_{DS} = 30 V, V_{GS} = 0 V$	Ch-1			1		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30 V, V_{GS} = 0 V$	Ch-2			1	μA	
	035	V_{DS} = 30 V, V_{GS} = 0 V, T_{J} = 55 °C	Ch-1			5	μι	
		V_{DS} = 30 V, V_{GS} = 0 V, T_{J} = 55 °C	Ch-2			5		
On-State Drain Current ^b	I _{D(on)}	$V_{DS} \ge 5$ V, V_{GS} = 10 V	Ch-1	20			A	
	·D(01)	$V_{DS} \ge 5$ V, V_{GS} = 10 V	Ch-2	20				
	e ^b R _{DS(on)}	V _{GS} = 10 V, I _D = 13.8 A	Ch-1		0.0100	0.0120		
Drain-Source On-State Resistance ^b		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}$	Ch-2		0.0030	0.0037	Ω	
Drain-Source On-State Resistance		$V_{GS} = 4.5 \text{ V}, I_D = 12.6 \text{ A}$	Ch-1		0.0120	0.0145	32	
		$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	Ch-2		0.0035	0.0045		
Forward Transconductanceb	9 _{fs}	V _{DS} = 10 V, I _D = 13.8 A	Ch-1		47		s	
	915	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}$	Ch-2	Ch-2			3	
Dynamic ^a								
Input Capacitance	C _{iss}	Channel-1	Ch-1		790			
	- 135	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	Ch-2		3830			
Output Capacitance	C _{oss}		Ch-1		190		pF	
		Channel-2	Ch-2		670			
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	Ch-1 Ch-2		76 315			
		V _{DS} = 15 V, V _{GS} = 10 V, I _D = 13.8 A	Ch-1		14	21		
	-	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	Ch-2		67.3	105		
Total Gate Charge	Qg		Ch-1		6.8	11		
		Channel-1	Ch-2		32	48		
		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 13.8 \text{ A}$	Ch-1		2.6	-	nC	
Gate-Source Charge	Q_gs	Channel-2	Ch-2		10.8			
Cata Drain Charge		$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 20 \text{ A}$	Ch-1		1.9		1	
Gate-Drain Charge	Q _{gd}		Ch-2		9.3			
Gate Resistance	R _g	f = 1 MHz	Ch-1	0.4	2	4	Ω	
	· ·g		Ch-2	0.2	1.1	2.2	24	

Notes:

a. Guaranteed by design, not subject to production testing.

b. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

Document Number: 63783 S12-0543 Rev. A, 12-Mar-12

Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C) Parameter	Symbol	Test Conditions		Min.	Тур.	Max.	Unit	
Dynamic ^a	Cymbol				199.	max.	Onic	
•			Ch-1		15	30		
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-2		30	60		
Rise Time	t _r	$V_{DD} = 15 \text{ V}, \text{ R}_{L} = 1.5 \Omega$	Ch-1		12	20		
nise fillie	ч	$\text{I}_\text{D} \cong$ 10 A, V_GEN = 4.5 V, R_g = 1 Ω	Ch-2		33	65		
Turn-Off Delay Time	t _{d(off)}	Channel-2	Ch-1		20	40		
	•u(011)	V_{DD} = 15 V, R_L = 1.5 Ω	Ch-2		40	80		
Fall Time	t _f	$I_D \cong$ 10 A, V_{GEN} = 4.5 V, R_g = 1 Ω	Ch-1		10	20		
			Ch-2		12	25	ns	
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-1		10	20		
·	- (-)	$V_{DD} = 15 \text{ V}, \text{ R}_{\text{L}} = 1.5 \Omega$	Ch-2		15	30		
Rise Time	t _r	$I_D \cong 10 \text{ A}, \text{ V}_{\text{GEN}} = 10 \text{ V}, \text{ R}_{\text{g}} = 1 \Omega$	Ch-1		12	20	Unit Ins A A N A N Ins Ins Ins Ins Ins Ins Ins Ins	
			Ch-2 Ch-1		22 20	25 40		
Turn-Off Delay Time	t _{d(off)}	Channel-2	Ch-2		40	40 80		
		$V_{DD} = 15 \text{ V}, \text{ R}_{\text{L}} = 1.5 \Omega$	Ch-1		10	20		
Fall Time	t _f	${\rm I_D}\cong {\rm 10~A},{\rm V_{GEN}}={\rm 10~V},{\rm R_g}={\rm 1~\Omega}$	Ch-2		10	20		
Drain-Source Body Diode Characteristic	cs	1	0.12				I	
Continuous Source-Drain Diode Current	ا _S	T _C = 25 °C	Ch-1			16		
Continuous Source-Drain Diode Current	IS	10-23 0	Ch-2			28	Δ	
Pulse Diode Forward Current ^a	I _{SM}		Ch-1			50		
Fuise Diode Forward Current	.21/1		Ch-2			110		
Body Diode Voltage	V _{SD}	$I_{\rm S} = 10 \text{ A}, V_{\rm GS} = 0 \text{ V}$	Ch-1		0.85	1.2	v	
Body Blode Vollage	- 3D	$I_{S} = 10 \text{ A}, V_{GS} = 0 \text{ V}$	Ch-2		0.8	1.2	v	
Body Diode Reverse Recovery Time	t _{rr}		Ch-1		20	40	ns	
Body Blode Heverse Hecovery Hille	٩r	Observal 1	Ch-2		30	60	113	
Body Diode Reverse Recovery Charge	Q _{rr}	Channel-1 I _F = 10 A, dl/dt = 100 A/μs, T _J = 25 °C	Ch-1		10	20	nC	
	11	1 - 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	Ch-2		21	40		
Reverse Recovery Fall Time	t _a	Channel-2	Ch-1		11			
	t _b	$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, \text{ T}_J = 25 ^\circ\text{C}$	Ch-2		17		ns	
Reverse Recovery Rise Time			Ch-1		9			
-	_		Ch-2		13			

Notes:

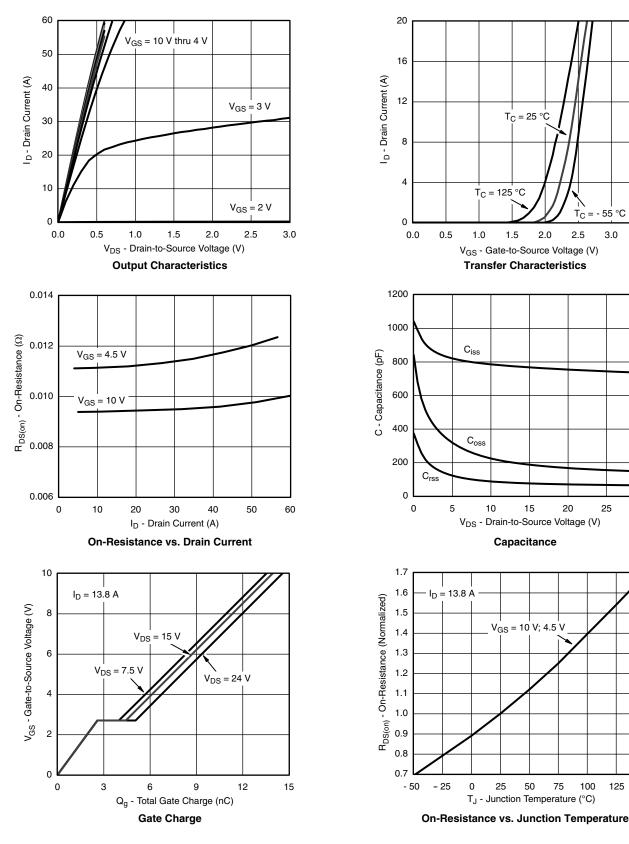
a. Guaranteed by design, not subject to production testing.

b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Vishay Siliconix

55 °C


3.0

25

30

3.5

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

www.vishay.com 4

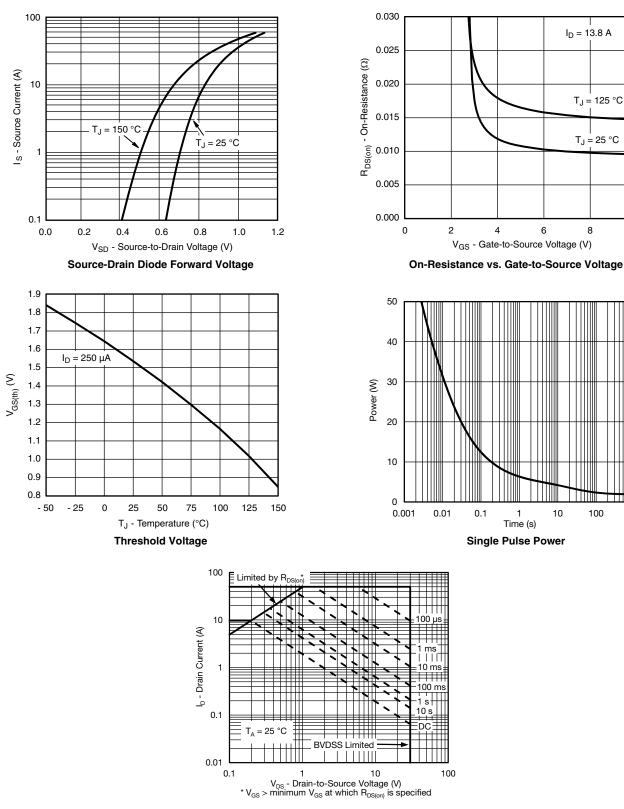
For more information please contact: pmostechsupport@vishay.com

Document Number: 63783 S12-0543 Rev. A, 12-Mar-12

125

150

SiZ918DT Vishay Siliconix

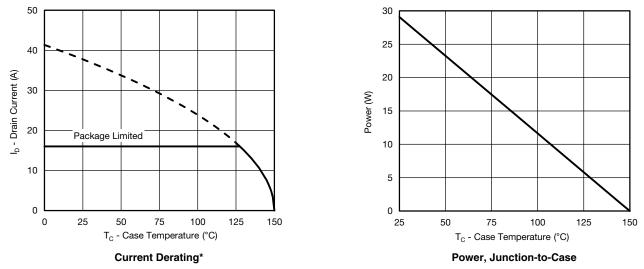

8

100

1000

10

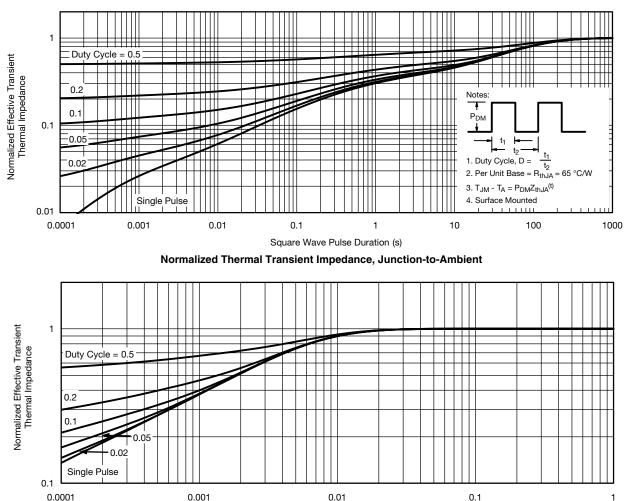
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



Safe Operating Area, Junction-to-Ambient

Vishay Siliconix

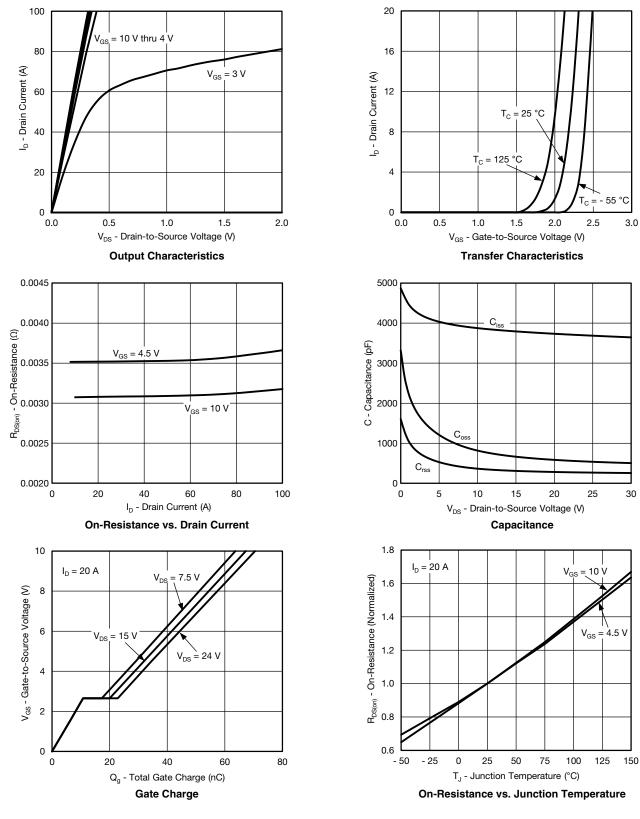
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



* The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

New Product

SiZ918DT Vishay Siliconix



Normalized Thermal Transient Impedance, Junction-to-Case

Square Wave Pulse Duration (s)

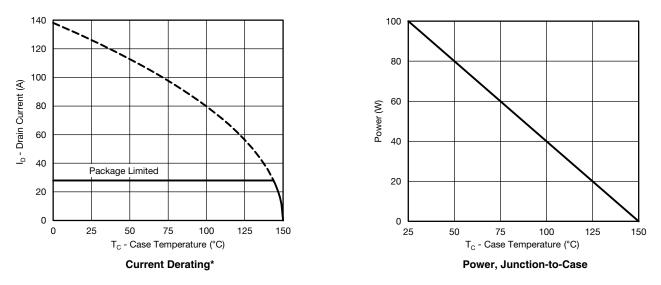
Vishay Siliconix

For more information please contact: pmostechsupport@vishay.com

Document Number: 63783 S12-0543 Rev. A, 12-Mar-12

VISHAY

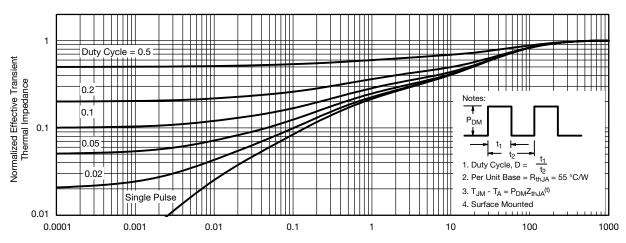
SiZ918DT Vishay Siliconix



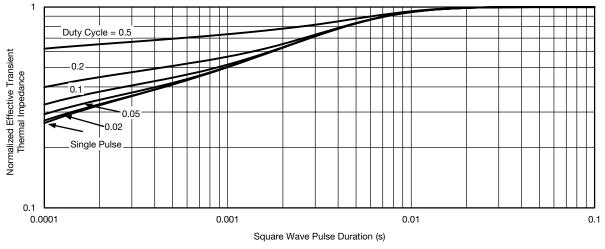
9

Vishay Siliconix

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

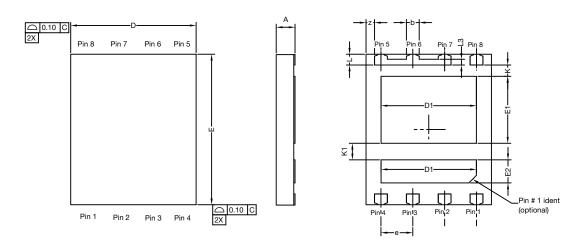

* The power dissipation P_D is based on $T_{J(max.)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

New Product

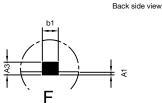

SiZ918DT Vishay Siliconix

Square Wave Pulse Duration (s)

Normalized Thermal Transient Impedance, Junction-to-Ambient


Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?63783.

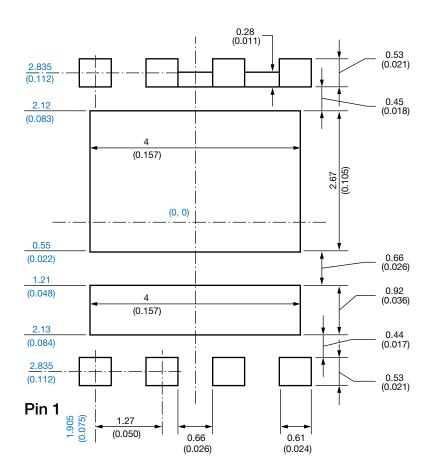



Vishay Siliconix

PowerPAIR[®] 6 x 5 Case Outline

Top side view

		MILLIMETERS		INCHES				
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
А	0.70	0.75	0.80	0.028	0.030	0.032		
A1	0.00	-	0.10	0.000	-	0.004		
A3	0.15	0.20	0.25	0.006	0.007	0.009		
b	0.43	0.51	0.61	0.017	0.020	0.024		
b1		0.25 BSC			0.010 BSC			
D	4.90	5.00	5.10	0.192	0.196	0.200		
D1	3.75	3.80	3.85	0.148	0.150	0.152		
E	5.90	6.00	6.10	0.232	0.236	0.240		
E1 Option AA (for W/B)	2.62	2.67	2.72	0.103	0.105	0.107		
E1 Option AB (for BWL)	2.42	2.47	2.52	0.095	0.097	0.099		
E2	0.87	0.92	0.97	0.034	0.036	0.038		
е		1.27 BSC			0.050 BSC			
K Option AA (for W/B)		0.45 typ.		0.018 typ.				
K Option AB (for BWL)		0.65 typ.		0.025 typ.				
K1	0.66 typ.			0.025 typ.				
L	0.33	0.43	0.53	0.013	0.017	0.020		
L3	0.23 BSC			0.009 BSC				
Z	0.34 BSC 0.013 BSC							


Revision: 22-Dec-14

Document Number: 63656

Vishay Siliconix

Recommended Minimum PAD for PowerPAIR[®] 6 x 5

Dimensions in millimeters (inch)

Note

• Linear dimensions are in black, the same information is provided in ordinate dimensions which are in blue.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jul-2024