onsemi

Complementary Power Transistors

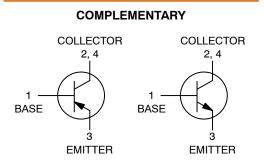
DPAK for Surface Mount Applications

MJD41C (NPN), MJD42C (PNP)

Designed for general purpose amplifier and low speed switching applications.

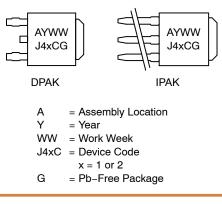
Features

- Lead Formed for Surface Mount Applications in Plastic Sleeves (No Suffix)
- Straight Lead Version in Plastic Sleeves ("1" Suffix)
- Electrically Similar to Popular TIP41 and TIP42 Series
- Epoxy Meets UL 94 V-0 @ 0.125 in
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant


MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	100	Vdc
Collector-Base Voltage	V _{CB}	100	Vdc
Emitter-Base Voltage	V _{EB}	5	Vdc
Collector Current – Continuous	Ι _C	6	Adc
Collector Current – Peak	I _{CM}	10	Adc
Base Current	Ι _Β	2	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	20 0.16	W W/°C
Total Power Dissipation (Note 1) @ $T_A = 25^{\circ}C$ Derate above 25°C	PD	1.75 0.014	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C
ESD – Human Body Model	HBM	3B	V
ESD – Machine Model	MM	С	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. These ratings are applicable when surface mounted on the minimum pad sizes recommended.

SILICON POWER TRANSISTORS 6 AMPERES 100 VOLTS, 20 WATTS

MARKING DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 5.

MJD41C (NPN), MJD42C (PNP)

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	6.25	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ hetaJA}$	71.4	°C/W

2. These ratings are applicable when surface mounted on the minimum pad sizes recommended.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Мах	Unit	
OFF CHARACTERISTICS			1	1	
Collector-Emitter Sustaining Voltage (Note 3) $(I_{C} = 30 \text{ mAdc}, I_{B} = 0)$	V _{CEO(sus)}	100	-	Vdc	
Collector Cutoff Current (V _{CE} = 60 Vdc, I _B = 0)	I _{CEO}	_	50	μAdc	
Collector Cutoff Current (V _{CE} = 100 Vdc, V _{EB} = 0)	I _{CES}	_	10	μAdc	
Emitter Cutoff Current ($V_{BE} = 5$ Vdc, $I_C = 0$)	I _{EBO}	_	0.5	mAdc	
ON CHARACTERISTICS (Note 3)	• • • •		•	•	
DC Current Gain (I _C = 0.3 Adc, V _{CE} = 4 Vdc) (I _C = 3 Adc, V _{CE} = 4 Vdc)	h _{FE}	30 15	- 75	_	
Collector–Emitter Saturation Voltage $(I_C = 6 \text{ Adc}, I_B = 600 \text{ mAdc})$	V _{CE(sat)}	_	1.5	Vdc	
Base-Emitter On Voltage (I _C = 6 Adc, V _{CE} = 4 Vdc)	V _{BE(on)}	_	2	Vdc	
DYNAMIC CHARACTERISTICS					
Current Gain – Bandwidth Product (Note 4) (I _C = 500 mAdc, V _{CE} = 10 Vdc, f _{test} = 1 MHz)	fT	3	-	MHz	
Small–Signal Current Gain (I _C = 0.5 Adc, V _{CE} = 10 Vdc, f = 1 kHz)	h _{fe}	20	-	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%. 4. $f_T = |h_{fe}| \bullet f_{test}$.

TYPICAL CHARACTERISTICS

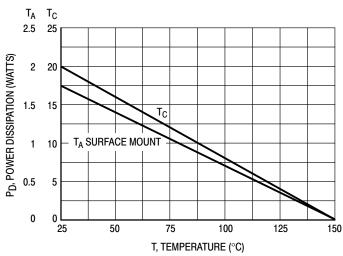


Figure 1. Power Derating

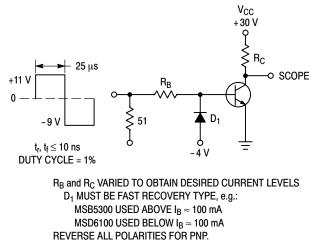


Figure 2. Switching Time Test Circuit

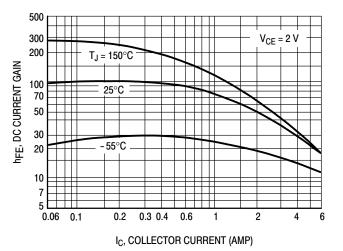


Figure 3. DC Current Gain

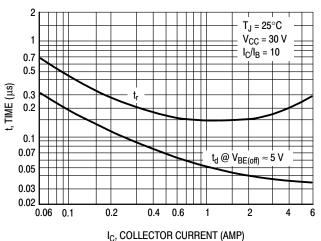
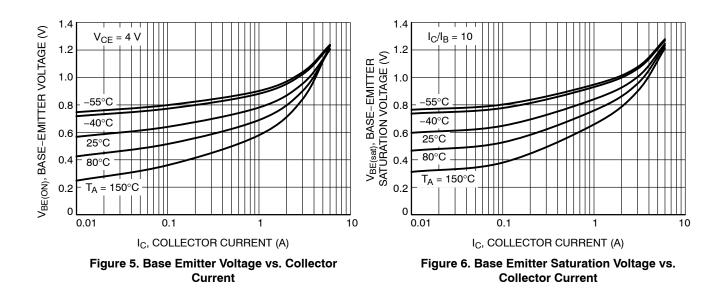



Figure 4. Turn-On Time

MJD41C (NPN), MJD42C (PNP)

TYPICAL CHARACTERISTICS

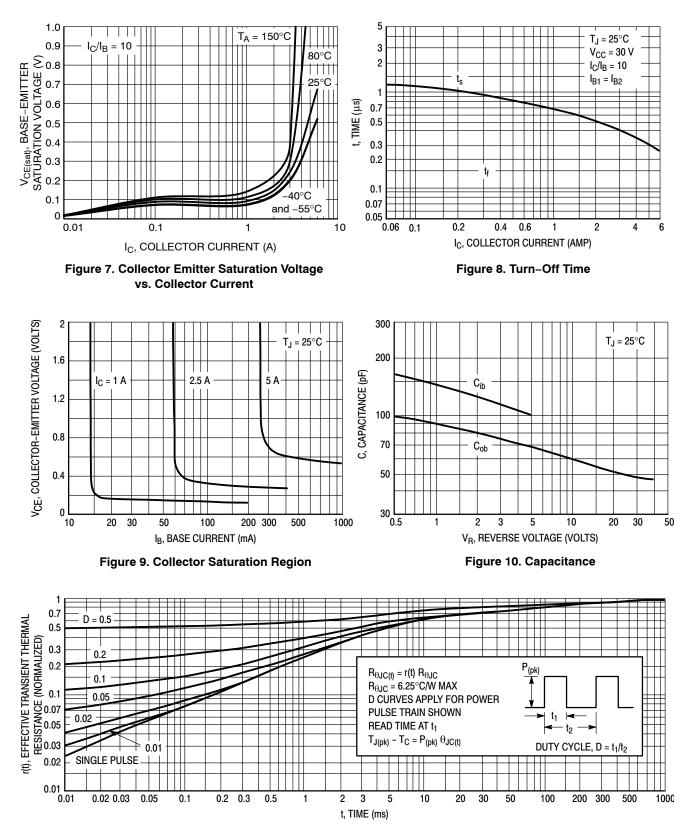


Figure 11. Thermal Response

MJD41C (NPN), MJD42C (PNP)

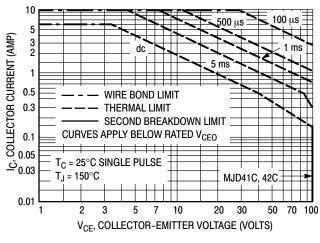


Figure 12. Maximum Forward Bias Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 12 is based on $T_{J(pk)} = 150^{\circ}$ C; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}$ C. $T_{J(pk)}$ may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

ORDERING INFORMATION

Device	Package Type	Package	Shipping [†]	
MJD41CRLG DPAK (Pb-Free)		369C	1,800 / Tape & Reel	
MJD41CT4G	DPAK (Pb-Free)	369C	2,500 / Tape & Reel	
NJVMJD41CT4G* DPAK (Pb–Free)		369C	2,500 / Tape & Reel	
MJD42CG DPAK (Pb-Free)		369C	75 Units / Rail	
MJD42CRLG	CRLG DPAK (Pb-Free)		1,800 / Tape & Reel	
NJVMJD42CRLG* DPAK (Pb-Free)		369C	1,800 / Tape & Reel	
MJD42CT4G DPAK (Pb-Free)		369C	2,500 / Tape & Reel	
NJVMJD42CT4G* DPAK (Pb-Free)		369C	2,500 / Tape & Reel	

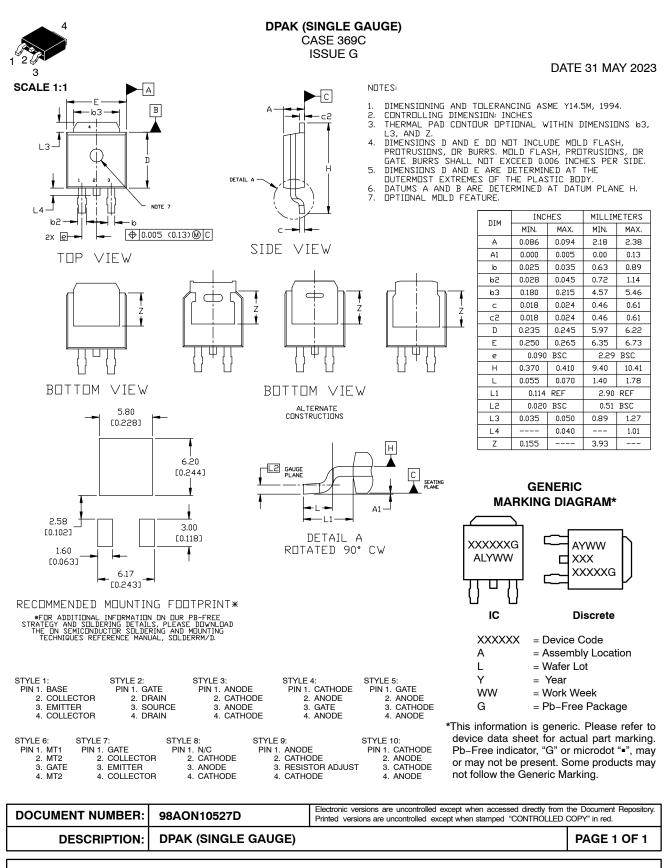
DISCONTINUED (Note 5)

MJD42C1G	IPAK	369D	75 Units / Rail
	(Pb-Free)		

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable

5. DISCONTINUED: This device is not recommended for new design. Please contact your **onsemi** representative for information. The most current information on this device may be available on <u>www.onsemi.com</u>.


DPAK INSERTION MOUNT CASE 369 ISSUE O DATE 02 JAN 2000 SCALE 1:1 С $B \rightarrow$ NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. Е R MILLIMETERS INCHES л DIM MIN MAX MIN MAX A 0.235 0.250 B 0.250 0.265 5.97 6.35 Δ 6.35 6.73 C 0.086 0.094 D 0.027 0.035 2.19 0.69 2.38 2 3 0.88 S E 0.033 0.040 F 0.037 0.047 0.84 1.01 0.94 -T-1.19 G 0.090 BSC 2.29 BSC SEATING H 0.034 0.040 J 0.018 0.023 0.87 1.01 0.46 0.58 K 0.350 0.380 8.89 9.65 **R** 0.175 0.215 4.45 5.46 0.050 0.090 1.27 J S 2.28 F V 0.030 0.050 н 0.77 1.27 D 3 PL G 🔫 ⊕ 0.13 (0.005) M T

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		STYLE 5:		STYLE 6:	
PIN 1.	BASE	PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	GATE	PIN 1.	MT1
2.	COLLECTOR	2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE	2.	MT2
3.	EMITTER	3.	SOURCE	3.	ANODE	3.	GATE	3.	CATHODE	3.	GATE
4.	COLLECTOR	4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE	4.	MT2

	DOCUMENT NUMBER:	UMBER: 98ASB42319B	98ASB42319B Electronic versions are uncontrolled except when accessed directly from the Dc Printed versions are uncontrolled except when stamped "CONTROLLED COPY"		
DESCRIPTION: DPAK INSERTION MOUNT PAGE 1 OF	DESCRIPTION:	RIPTION: DPAK INSERTION MOUNT		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>