

Bipolar Power Transistors 40 V, 3.0 A, Low V_{CE(sat)} **PNP Transistor**

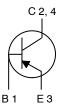
NSS40300MZ4

onsemi's e²PowerEdge family of low V_{CE(sat)} transistors are surface mount devices featuring ultra low saturation voltage (V_{CE(sat)}) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical applications are DC-DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

Features

- Complement to NSS40301MZ4 Series
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant


MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	40	Vdc
Collector-Base Voltage	V _{CB}	40	Vdc
Emitter-Base Voltage	V _{EB}	6.0	Vdc
Base Current - Continuous	lΒ	1.0	Adc
Collector Current - Continuous	Ic	3.0	Adc
Collector Current - Peak	I _{CM}	5.0	Adc
Total Power Dissipation Total P _D @ T _A = 25°C (Note 1) Total P _D @ T _A = 25°C (Note 2)	P _D	2.0 0.80	W
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

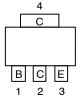
- 1. Mounted on 1" sq. (645 sq. mm) Collector pad on FR-4 bd material.
- 2. Mounted on 0.012" sq. (7.6 sq. mm) Collector pad on FR-4 bd material.

PNP TRANSISTOR 3.0 AMPERES 40 VOLTS, 2.0 WATTS

Schematic

CASE 318E STYLE 1

MARKING DIAGRAM



Α = Assembly Location

W = Work Week

= Specific Device Code 40300 = Pb-Free Package

PIN ASSIGNMENT

Top View Pinout

ORDERING INFORMATION

See detailed ordering and shipping information ion page 5 of this data sheet.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient Junction-to-Ambient on 1" sq. (645 sq. mm) Collector pad on FR-4 bd material Junction-to-Ambient on 0.012" sq. (7.6 sq. mm) Collector pad on FR-4 bd material	$egin{array}{l} R_{ hetaJA} \ R_{ hetaJA} \end{array}$	64 155	°C/W
Thermal Resistance, Junction-to-Case Junction-to-Case on 1" sq. (645 sq. mm) Collector pad on FR-4 bd material	$R_{ heta JC}$	13	
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•	•	
Collector-Emitter Sustaining Voltage (I _C = 10 mAdc, I _B = 0 Adc)	V _{CEO(sus)}	40	-	-	Vdc
Emitter–Base Voltage (I _E = 50 μAdc, I _C = 0 Adc)	V_{EBO}	6.0	-	-	Vdc
Collector Cutoff Current (V _{CB} = 40 Vdc)	I _{CBO}	_	-	100	nAdc
Emitter Cutoff Current (V _{BE} = 6.0 Vdc)	I _{EBO}	_	-	100	nAdc
ON CHARACTERISTICS (Note 3)			•	•	
Collector–Emitter Saturation Voltage ($I_C = 0.5$ Adc, $I_B = 50$ mAdc) ($I_C = 1.0$ Adc, $I_B = 20$ mAdc) ($I_C = 3.0$ Adc, $I_B = 0.3$ Adc)	V _{CE(sat)}		- - -	0.070 0.150 0.400	Vdc
Base–Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 0.1 Adc)	V _{BE(sat)}	-	-	1.0	Vdc
Base–Emitter On Voltage (I _C = 1.0 Adc, V _{CE} = 2.0 Vdc)	V _{BE(on)}	-	-	0.9	Vdc
DC Current Gain ($I_C = 0.5 \text{ Adc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 1.0 \text{ Adc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 3.0 \text{ Adc}$, $V_{CE} = 1.0 \text{ Vdc}$)	h _{FE}	200 175 100	- - -	_ 350 _	-
DYNAMIC CHARACTERISTICS					
Output Capacitance (V _{CB} = 10 Vdc, f = 1.0 MHz)	C _{ob}	-	40	-	pF
Input Capacitance (V _{EB} = 5.0 Vdc, f = 1.0 MHz)	C _{ib}	-	130	-	pF
Current-Gain - Bandwidth Product (Note 4) (I _C = 500 mA, V _{CE} = 10 V, F _{test} = 1.0 MHz)	f⊤	-	160	-	MHz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{4.} $f_T = |h_{FE}| \cdot f_{test}$

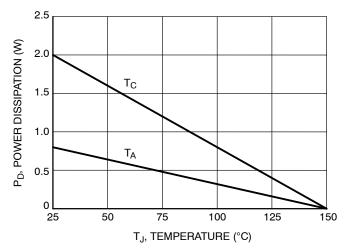


Figure 1. Power Derating

^{3.} Pulse Test: Pulse Width ≤300 μs, Duty Cycle ≤ 2%.

TYPICAL CHARACTERISTICS

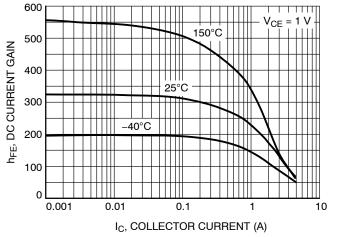


Figure 2. DC Current Gain

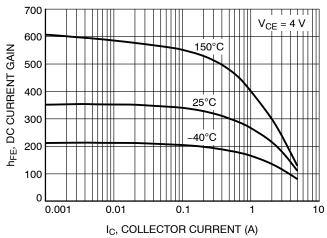


Figure 3. DC Current Gain

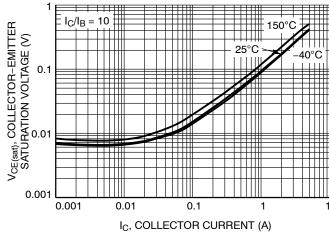


Figure 4. Collector-Emitter Saturation Voltage

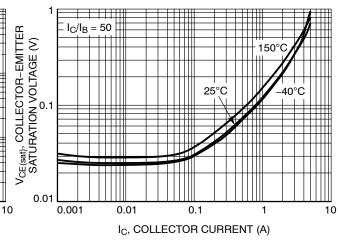


Figure 5. Collector-Emitter Saturation Voltage

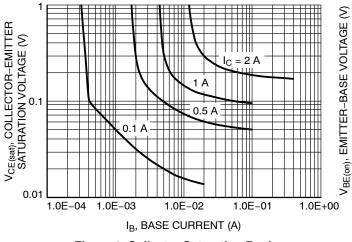


Figure 6. Collector Saturation Region

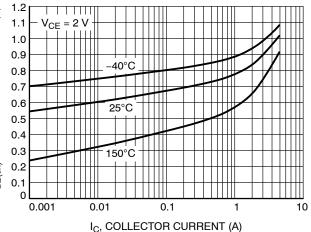


Figure 7. V_{BE(on)} Voltage

TYPICAL CHARACTERISTICS

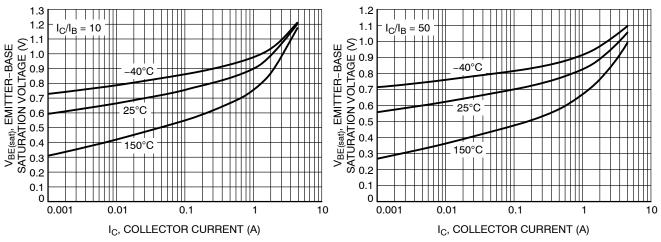


Figure 8. Base-Emitter Saturation Voltage

Figure 9. Base-Emitter Saturation Voltage

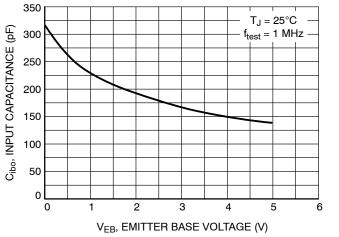


Figure 10. Input Capacitance

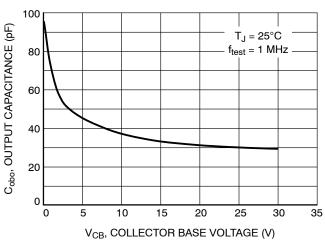


Figure 11. Output Capacitance

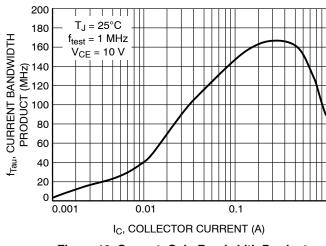


Figure 12. Current-Gain Bandwidth Product

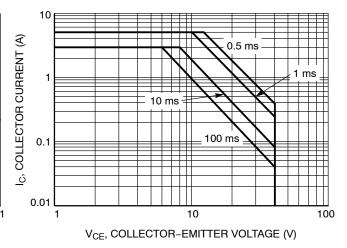
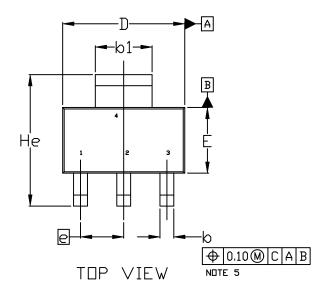


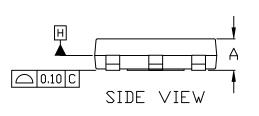
Figure 13. Safe Operating Area

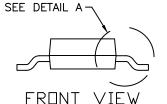
ORDERING INFORMATION

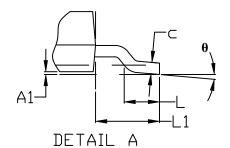
Device	Package	Shipping [†]
NSS40300MZ4T1G	SOT-223 (Pb-Free)	1,000 / Tape & Reel
NSV40300MZ4T1G*	SOT-223 (Pb-Free)	1,000 / Tape & Reel
NSS40300MZ4T3G	SOT-223 (Pb-Free)	4,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP

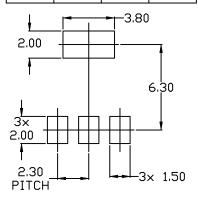

Capable






SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018



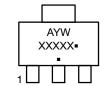
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. AI IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS		
DIM	MIN.	N□M.	MAX.
Α	1.50	1.63	1.75
A1	0.02	0.06	0.10
Ø	0.60	0.75	0.89
b1	2.90	3.06	3.20
U	0.24	0.29	0.35
D	6.30	6.50	6.70
E	3.30	3.50	3.70
е	2.30 BSC		
L	0.20		
L1	1.50	1.75	2.00
He	6.70	7.00	7.30
θ	0°		10°

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

Y = Year W = Work Week

XXXXX = Specific Device Code

= Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot "•", may
or may not be present. Some products may

not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales