

Medium-Power Plastic NPN Silicon Transistors

2N4921G, 2N4922G, 2N4923G

These high-performance plastic devices are designed for driver circuits, switching, and amplifier applications.

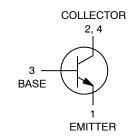
Features

- Low Saturation Voltage
- Excellent Power Dissipation
- Excellent Safe Operating Area
- Complement to PNP 2N4920G
- These Devices are Pb-Free and are RoHS Compliant**

MAXIMUM RATINGS

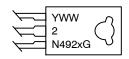
Rating	Symbol	Value	Unit
Collector-Emitter Voltage 2N4921G 2N4922G 2N4923G	V _{CEO}	40 60 80	Vdc
Collector-Emitter Voltage 2N4921G 2N4922G 2N4923G	V _{CB}	40 60 80	Vdc
Emitter Base Voltage	V _{EB}	5.0	Vdc
Collector Current - Continuous (Note 2)	I _C	1.0	Adc
Collector Current - Peak (Note 2)	I _{CM}	3.0	Adc
Base Current – Continuous	Ι _Β	1.0	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	30 0.24	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


2. The 1.0 A maximum I_C value is based upon JEDEC current gain requirements. The 3.0 A maximum value is based upon actual current handling capability of the device (see Figures 5 and 6).

THERMAL CHARACTERISTICS (Note 3)

Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	4.16	°C/W	


3. Recommend use of thermal compound for lowest thermal resistance. *Indicates JEDEC Registered Data.

1.0 AMPERE GENERAL PURPOSE **POWER TRANSISTORS** 40-80 VOLTS, 30 WATTS

MARKING DIAGRAM

= Year = Work Week 2N492x = Device Code x = 1, 2, or 3= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
2N4922G	TO-225 (Pb-Free)	500 Units / Box
2N4923G	TO-225 (Pb-Free)	500 Units / Box

DISCONTINUED (Note 1)

	,	
2N4921G	TO-225 (Pb-Free)	500 Units / Box

1. **DISCONTINUED:** This device is not recommended for new design. Please contact your **onsemi** representative for information. The most current information on this device may be available on www.onsemi.com.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	1
Collector–Emitter Sustaining Voltage (Note 4) (I _C = 0.1 Adc, I _B = 0) 2N4921G 2N4922G 2N4923G	VCEO(sus)	40 60 80	- - -	Vdc
Collector Cutoff Current (V _{CE} = 20 Vdc, I _B = 0) 2N4921G (V _{CE} = 30 Vdc, I _B = 0) 2N4922G (V _{CE} = 40 Vdc, I _B = 0) 2N4923G	I _{CEO}	-	0.5 0.5 0.5	mAdc
Collector Cutoff Current $(V_{CE} = Rated \ V_{CEO}, \ V_{EB(off)} = 1.5 \ Vdc)$ $(V_{CE} = Rated \ V_{CEO}, \ V_{EB(off)} = 1.5 \ Vdc, \ T_{C} = 125^{\circ}C$	I _{CEX}	- -	0.1 0.5	mAdc
Collector Cutoff Current $(V_{CB} = Rated V_{CB}, I_E = 0)$	I _{CBO}	-	0.1	mAdc
Emitter Cutoff Current (V _{EB} = 5.0 Vdc, I _C = 0)	I _{EBO}	-	1.0	mAdc
ON CHARACTERISTICS			•	*
DC Current Gain (Note 4) $ \begin{array}{l} \text{(I}_C=50 \text{ mAdc, V}_{CE}=1.0 \text{ Vdc)} \\ \text{(I}_C=500 \text{ mAdc, V}_{CE}=1.0 \text{ Vdc)} \\ \text{(I}_C=1.0 \text{ Adc, V}_{CE}=1.0 \text{ Vdc)} \end{array} $	h _{FE}	40 30 10	- 150 -	-
Collector-Emitter Saturation Voltage (Note 4) (I _C = 1.0 Adc, I _B = 0.1 Adc)	V _{CE(sat)}	-	0.6	Vdc
Base–Emitter Saturation Voltage (Note 4) (I _C = 1.0 Adc, I _B = 0.1 Adc)	V _{BE(sat)}	-	1.3	Vdc
Base-Emitter On Voltage (Note 4) (I _C = 1.0 Adc, V _{CE} = 1.0 Vdc)	V _{BE(on)}	-	1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS	-			"
Current–Gain – Bandwidth Product (I_C = 250 mAdc, V_{CE} = 10 Vdc, f = 1.0 MHz)	f _T	3.0	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)	C _{ob}	-	100	pF
Small–Signal Current Gain ($I_C = 250 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{fe}	25	_	-

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: PW \approx 300 μ s, Duty Cycle \approx 2.0%.

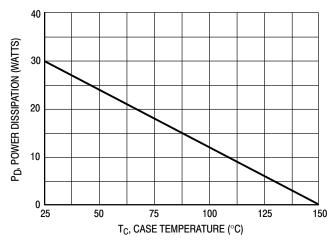


Figure 1. Power Derating

Safe Area Curves are indicated by Figure 5. All limits are applicable and must be observed.

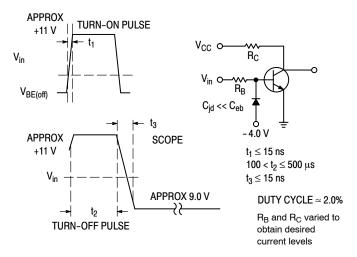


Figure 2. Switching Time Equivalent Circuit

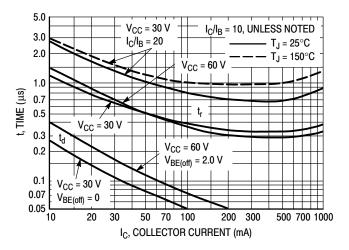


Figure 3. Turn-On Time

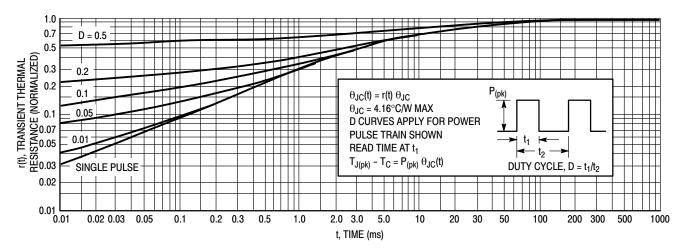


Figure 4. Thermal Response

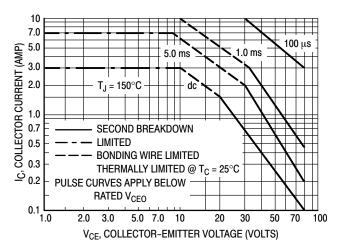


Figure 5. Active-Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ operation i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $T_{J(pk)} = 150^{\circ} C$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ} C$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

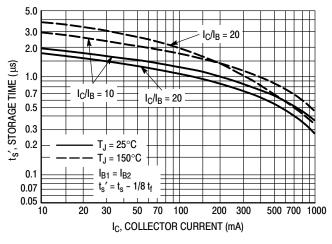
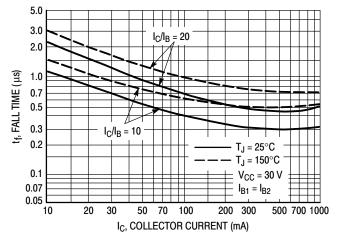
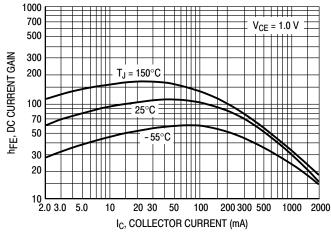
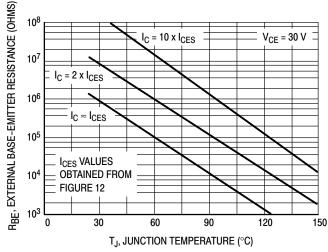


Figure 6. Storage Time


Figure 7. Fall Time

V_{CE}, COLLECTOR-EMITTER VOLTAGE (VOLTS) $I_{C} = 0.1 A$ 0.25 A 0.5 A 1.0 A 8.0 $T_J = 25^{\circ}C$ 0.6 0.4 0.2 0.2 0.3 0.5 20 30 50 2.0 3.0 5.0 10 100 200 IB, BASE CURRENT (mA)

Figure 8. Current Gain

Figure 9. Collector Saturation Region

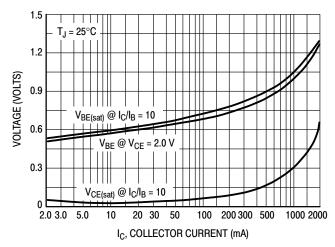
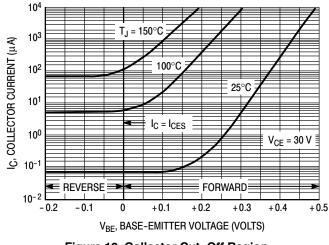



Figure 10. Effects of Base-Emitter Resistance

Figure 11. "On" Voltage

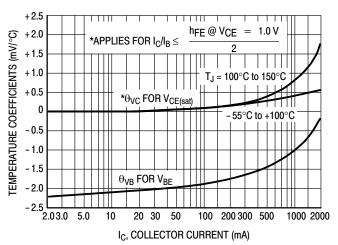
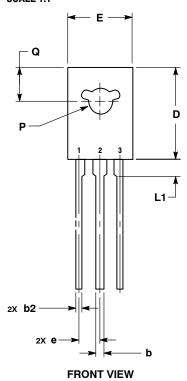
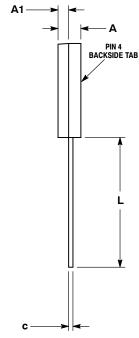


Figure 12. Collector Cut-Off Region

Figure 13. Temperature Coefficients

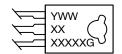




TO-225 CASE 77-09 **ISSUE AD**

DATE 25 MAR 2015

SCALE 1:1



SIDE VIEW

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. NUMBER AND SHAPE OF LUGS OPTIONAL.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.40	3.00		
A1	1.00	1.50		
b	0.60	0.90		
b2	0.51	0.88		
С	0.39	0.63		
D	10.60	11.10		
E	7.40	7.80		
е	2.04	2.54		
L	14.50	16.63		
L1	1.27	2.54		
P	2.90	3.30		
Q	3.80	4.20		

GENERIC MARKING DIAGRAM*

= Year

ww = Work Week XXXXX = Device Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. 2., 4. 3.	EMITTER COLLECTOR BASE	STYLE 2: PIN 1. 2., 4. 3.	STYLE 3: PIN 1. 2., 4. 3.	BASE COLLECTOR EMITTER	STYLE 4: PIN 1. 2., 4. 3.	ANODE 1 ANODE 2 GATE	2., 4.	MT 1 MT 2 GATE
STYLE 6: PIN 1. 2., 4. 3.	CATHODE GATE ANODE	STYLE 7: PIN 1. 2., 4. 3.	STYLE 8: PIN 1. 2., 4. 3.	SOURCE GATE DRAIN	STYLE 9: PIN 1. 2., 4. 3.	GATE DRAIN SOURCE	STYLE 10: PIN 1. 2., 4. 3.	SOURCE DRAIN

DOCUMENT NUMBER:	98ASB42049B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-225		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi nakes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales