

General Purpose Transistors

PNP Silicon

MMBT3906TT1

This transistor is designed for general purpose amplifier applications. It is housed in the SOT-416/SC-75 package which is designed for low power surface mount applications.

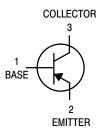
Features

- NSVM Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_A = 25°C)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	-40	Vdc
Collector-Base Voltage	V _{CBO}	-40	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current - Continuous	Ic	-200	mAdc

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation, FR-4 Board (Note 1) @T _A = 25°C Derated above 25°C	P _D	200 1.6	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{\theta JA}$	600	°C/W
Total Device Dissipation, FR-4 Board (Note 2) @T _A = 25°C Derated above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	400	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1

- 1. FR-4 @ Minimum Pad
- 2. FR-4 @ 1.0 × 1.0 Inch Pad

GENERAL PURPOSE AMPLIFIER TRANSISTORS SURFACE MOUNT

CASE 463 SOT-416/SC-75 STYLE 1

MARKING DIAGRAM

2A = Device Code
M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping _†
MMBT3906TT1G	SOT-416 (Pb-Free)	3000 / Tape & Reel
NSVMMBT3906TT1G	SOT-416 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit	
OFF CHARACTERIST	ics	<u>.</u>			•	
Collector – Emitter Brea (I _C = –1.0 mAdc, I _B	akdown Voltage (Note 3) = 0)	V _{(BR)CEO}	-40	-	Vdc	
Collector – Base Break (I _C = –10 μAdc, I _E :		V _(BR) CBO	-40	-	Vdc	
Emitter – Base Breakdo ($I_E = -10 \mu Adc, I_C =$		V _{(BR)EBO}	-5.0	-	Vdc	
Base Cutoff Current (V _{CE} = -30 Vdc, V _E	_{EB} = -3.0 Vdc)	I _{BL}	_	-50	nAdc	
Collector Cutoff Currer (V _{CE} = -30 Vdc, V _E		I _{CEX}	_	-50	nAdc	
ON CHARACTERISTI	CS (Note 3)		•	•	•	
DC Current Gain	_{CE} = -1.0 Vdc) _{CE} = -1.0 Vdc) _{CE} = -1.0 Vdc)	h _{FE}	60 80 100 60 30	- 300 - -	_	
Collector – Emitter Saturation (I _C = -10 mAdc, I _B (I _C = -50 mAdc, I _B	= -1.0 mAdc)	V _{CE(sat)}	- -	-0.25 -0.4	Vdc	
Base – Emitter Saturation Voltage $ \begin{pmatrix} I_C = -10 \text{ mAdc, } I_B = -1.0 \text{ mAdc, } \\ (I_C = -50 \text{ mAdc, } I_B = -5.0 \text{ mAdc)} \end{pmatrix} $		V _{BE(sat)}	-0.65 -	-0.85 -0.95	Vdc	
SMALL-SIGNAL CHA	ARACTERISTICS					
Current – Gain – Band (I _C = –10 mAdc, V _C	width Product c _E = −20 Vdc, f = 100 MHz)	f _T	250	-	MHz	
Output Capacitance (V _{CB} = -5.0 Vdc, I _E	= 0, f = 1.0 MHz)	$C_{ m obo}$	_	4.5	pF	
Input Capacitance1 (V _{EB} = -0.5 Vdc, I _C	; = 0, f = 1.0 MHz)	C _{ibo}	-	10.0	pF	
Input Impedance (V _{CE} = -10 Vdc, I _C	= -1.0 mAdc, f = 1.0 kHz)	h _{ie}	2.0	12	kΩ	
Voltage Feedback Ratio $(V_{CE} = -10 \text{ Vdc}, I_{C} = -1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$		h _{re}	0.1	10	X 10-	
Small – Signal Current Gain $(V_{CE} = -10 \text{ Vdc}, I_{C} = -1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$		h _{fe}	100	400	-	
Output Admittance $(V_{CE} = -10 \text{ Vdc}, I_{C} = -1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$		h _{oe}	3.0	60	μmho	
Noise Figure (V _{CE} = -5.0 Vdc, I _C = -100 μ Adc, R _S = 1.0 k Ω , f = 1.0 kHz)		NF	-	4.0	dB	
SWITCHING CHARAC	CTERISTICS				-	
Delay Time	$(V_{CC} = -3.0 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc})$	t _d	_	35	ns	
Rise Time	$(I_C = -10 \text{ mAdc}, I_{B1} = -1.0 \text{ mAdc})$	t _r	_	35		
Storage Time	$(V_{CC} = -3.0 \text{ Vdc}, I_C = -10 \text{ mAdc})$	t _s	_	225	ns	
Fall Time	Time $(I_{B1} = I_{B2} = -1.0 \text{ mAdc})$ t_f -		75			

^{3.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

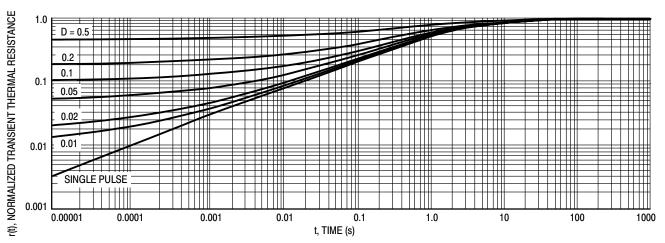
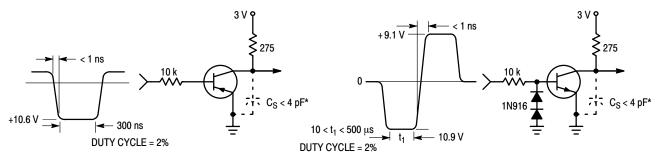



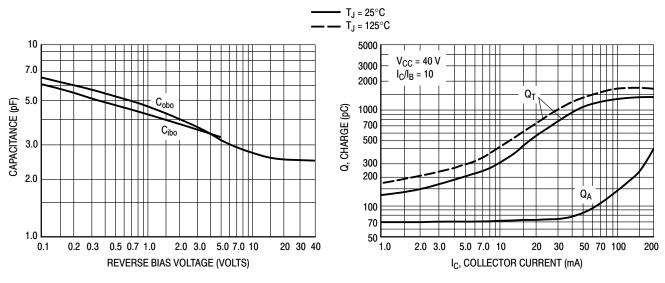
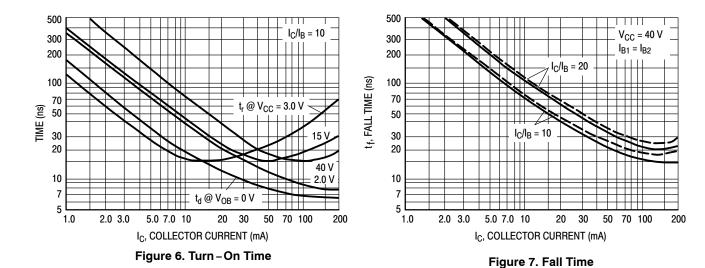
Figure 1. Normalized Thermal Response

* Total shunt capacitance of test jig and connectors

Figure 2. Delay and Rise Time Equivalent Test Circuit

Figure 3. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

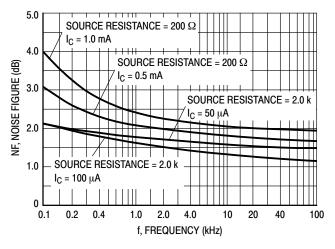

Figure 4. Capacitance

Figure 5. Charge Data

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS **NOISE FIGURE VARIATIONS**

 $(V_{CE} = -5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

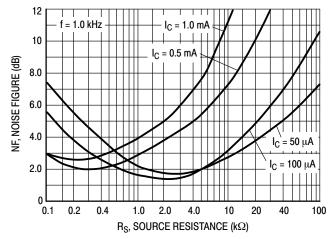
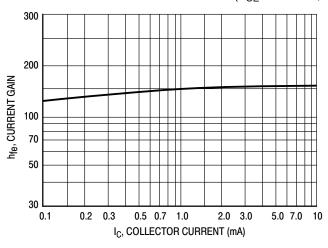



Figure 8.

Figure 9.

h PARAMETERS

 $(V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$

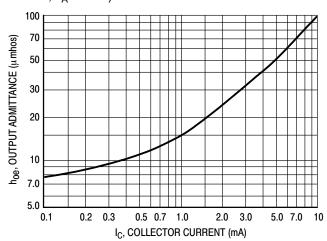
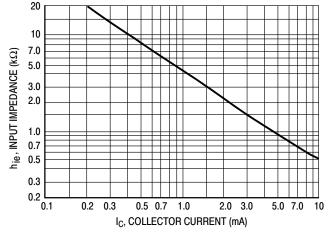



Figure 10. Current Gain

Figure 11. Output Admittance 10

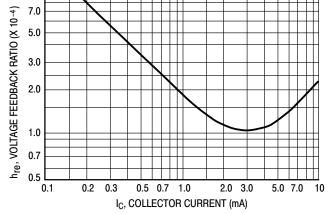


Figure 12. Input Impedance

Figure 13. Voltage Feedback Ratio

STATIC CHARACTERISTICS

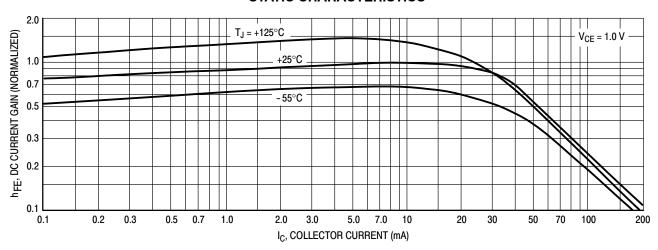


Figure 14. DC Current Gain

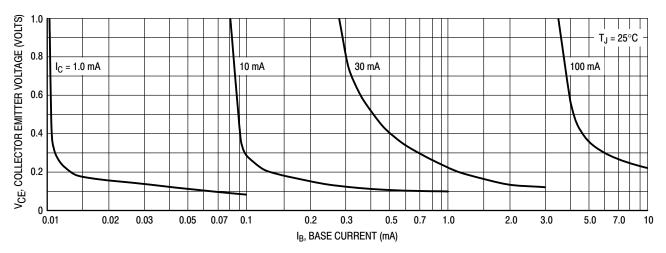


Figure 15. Collector Saturation Region

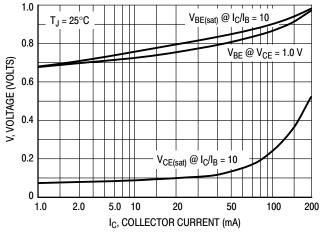


Figure 16. "ON" Voltages

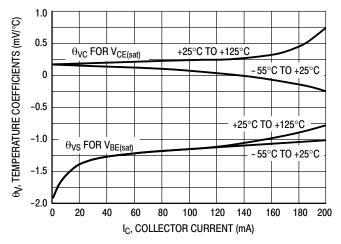
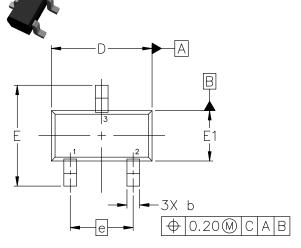


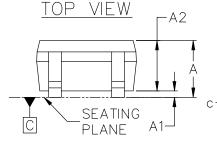
Figure 17. Temperature Coefficients

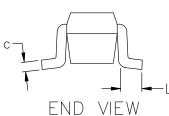
SC75-3 1.60x0.80x0.80, 1.00P

CASE 463 ISSUE H

DATE 01 FEB 2024


NOTES:


- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
- ALL DIMENSION ARE IN MILLIMETERS.


DIM	MILLIMETERS		
DIM	MIN.	NOM.	MAX.
А	0.70	0.80	0.90
A1	0.00	0.05	0.10
A2	0.80 REF.		
b	0.15	0.20	0.30
С	0.10	0.15	0.25
D	1.55	1.60	1.65
Е	1.50	1.60	1.70
E1	0.70	0.80	0.90
е	1.00 BSC		
L	0.10	0.15	0.20

-0.356

0.787

SIDE VIEW

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

Μ = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:	
PIN 1. BASE	
2. EMITTER	

3 COLLECTOR

STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE

STYLE 3: PIN 1. ANODE 2. ANODE 3 CATHODE

RECOMMENDED MOUNTING FOOTPRINT* FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES

REFERENCE MANUAL, SOLDERRM/D.

1.000

STYLE 4:	STYLE 5:
PIN 1. CATHODE	PIN 1. GATE
2. CATHODE	2. SOURCE
3. ANODE	3. DRAIN

Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98ASB15184C Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION: SC75-3 1.60x0.80x0.80, 1.00P PAGE 1 OF 1

1.803

0.508

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales