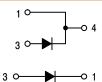
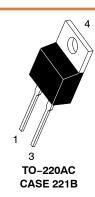


Switch-mode Power Rectifiers NHPV08S600G


Features


- Ultrafast 30 Nanosecond Recovery Time
- 150°C Operating Junction Temperature
- High Voltage Capability of 600 V
- Low Forward Drop
- Low Leakage Specified @ 125°C Case Temperature
- This Device is Pb-Free and RoHS Compliant

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

PLANAR ULTRAFAST RECTIFIERS 8 A, 600 V

MARKING DIAGRAMS

A = Assembly Location

Y = Year WW = Work Week

G = Pb-Free Package KA = Diode Polarity

ORDERING INFORMATION

Device	Package	Shipping
NHPV08S600G	TO-220AC (Pb-Free)	50 Units / Rail

^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NHPV08S600G

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	600	V
Average Rectified Forward Current (Rated V _R)	I _{F(AV)}	8 A @ T _C = 130°C	Α
Peak Rectified Forward Current (Rated V _R , Square Wave, 20 kHz)	I _{FRM}	8 A @ T _C = 125°C	Α
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	80	А
Operating Junction Temperature and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
NHPV08S600G: Thermal Resistance Junction-to-Case (Note 1)	$R_{ heta JC}$	1.5	°C/W
NHPJ08S600G: Thermal Resistance Junction-to-Case (Note 1)		4.25	°C/W

^{1.} Junction–to–Case shown as a typical value using a fixed 25°C cold plate boundary.

ELECTRICAL CHARACTERISTICS

Characteristic	Test Conditions	Symbol	Тур	Max	Unit
Instantaneous Forward Voltage (Note 2)	(I _F = 8 A, T _C = 125°C) (I _F = 8 A, T _C = 25°C)	V _F	1.5 2.7	1.8 3.2	V
Instantaneous Reverse Current (Note 2)	(Rated DC Voltage, T _C = 125°C) (Rated DC Voltage, T _C = 25°C)	I _R	46 0.1	400 30	μΑ
Reverse Recovery Time	$(I_F = 0.5 \text{ A}, I_{rr} = 0.25 \text{ A}, I_R = 1 \text{ A})$ $(I_F = 1 \text{ A}, dI_F/dt = -50 \text{ A}/\mu\text{s}, V_R = 30 \text{ V})$	t _{rr}	- -	30 50	ns
Reverse Recovery Time Peak Reverse Recovery Current Total Reverse Recovery Charge Softness Factor	$(I_F = 8 \text{ A}, d_{IF}/d_t = -200 \text{ A}/\mu s, T_C = 25^{\circ}\text{C})$	t _{rr} I _{RM} Q _{rr} S	30 2.3 37 2	50 3 50 -	ns A nC -
Reverse Recovery Time Peak Reverse Recovery Current Total Reverse Recovery Charge Softness Factor	$(I_F = 8 \text{ A}, d_{IF}/d_t = -200 \text{ A/}\mu\text{s}, T_C = 125^{\circ}\text{C})$	t _{rr} I _{RM} Q _{rr} S	45 5.5 150 0.35	- - - -	ns A nC -
Forward Recovery Time Peak Forward Recovery Voltage	$(I_F = 8 \text{ A}, d_{IF}/d_t = 120 \text{ A}/\mu\text{s}, T_C = 25^{\circ}\text{C})$	t _{fr} V _{FP}	-	200 6	ns V

^{2.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

NHPV08S600G

TYPICAL CHARACTERISTICS

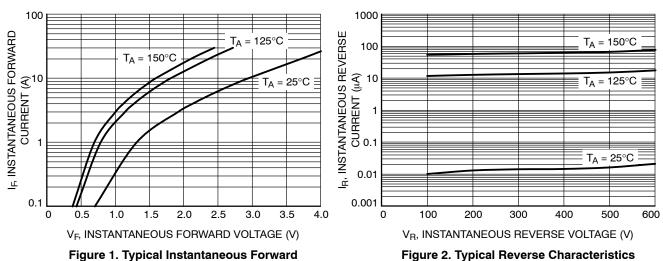


Figure 1. Typical Instantaneous Forward Characteristics

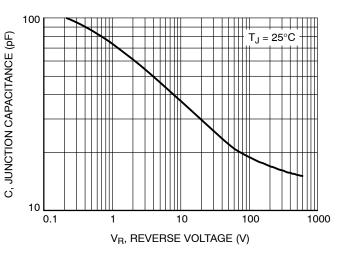


Figure 3. Typical Junction Capacitance

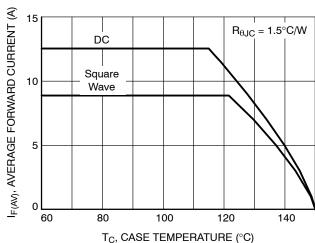


Figure 4. Current Derating TO-220AC

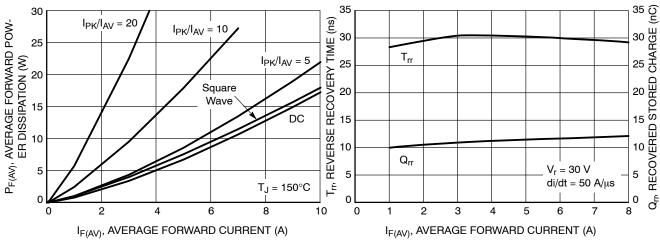
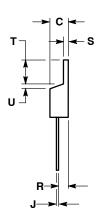


Figure 5. Forward Power Dissipation

Figure 6. Typical Recovery Characteristics

TO-220, 2-LEAD CASE 221B-04 **ISSUE F**


DATE 12 APR 2013

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.595	0.620	15.11	15.75
В	0.380	0.405	9.65	10.29
С	0.160	0.190	4.06	4.82
D	0.025	0.039	0.64	1.00
F	0.142	0.161	3.61	4.09
G	0.190	0.210	4.83	5.33
Н	0.110	0.130	2.79	3.30
J	0.014	0.025	0.36	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.14	1.52
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.14	1.39
T	0.235	0.255	5.97	6.48
U	0.000	0.050	0.000	1.27

Q Н

STYLE 1: PIN 1. CATHODE 2. N/A 3. ANODE

PIN 1. ANODE 2. N/A 3. CATHODE 4. ANODE

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DOCUMENT NUMBER:** 98ASB42149B **DESCRIPTION:** TO-220, 2-LEAD PAGE 1 OF 1

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales