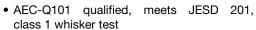


www.vishay.com

Vishay Semiconductors

Hyperfast Rectifier, 8 A FRED Pt®


LINKS TO ADDITIONAL RESOURCES

PRIMARY CHARACTERISTICS							
I _{F(AV)}	8 A						
V _R	600 V						
V _F at I _F	1.3 V						
t _{rr} typ.	18 ns						
T _J max.	175 °C						
Package	D ² PAK (TO-263AB), TO-262AA						
Circuit configuration	Single						

FEATURES

- Hyperfast recovery time
- Low forward voltage drop
- Low leakage current
- 175 °C operating junction temperature
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C

 Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

FREE

DESCRIPTION / APPLICATIONS

State of the art hyperfast recovery rectifiers designed with optimized performance of forward voltage drop, hyperfast recovery time, and soft recovery.

The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in PFC boost stage in the AC/DC section of SMPS, inverters or as freewheeling diodes.

Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

MECHANICAL DATA

Case: D²PAK (TO-263AB), TO-262AA

Molding compound meets UL 94 V-0 flammability rating

Terminals: matte tin plated leads, solderable per

J-STD-002

ABSOLUTE MAXIMUM RATINGS									
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS					
Peak repetitive reverse voltage	V_{RRM}		600	V					
Average rectified forward current	I _{F(AV)}	T _C = 144 °C	8						
Non-repetitive peak surge current	I _{FSM}	T _J = 25 °C	90	Α					
Peak repetitive forward current	I _{FM}		16						
Operating junction and storage temperatures	T _J , T _{Stg}		-55 to +175	°C					

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)									
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS			
Breakdown voltage, blocking voltage	V_{BR} , V_{R}	I _R = 100 μA	600	-	-	V			
Famuerd veltage	V _F	I _F = 8 A	-	2.0	2.4	V			
Forward voltage		I _F = 8 A, T _J = 150 °C	-	1.3	1.8				
Reverse leakage current I _R		$V_R = V_R$ rated	-	0.03	50				
		$T_J = 150 ^{\circ}\text{C}, V_R = V_R \text{rated}$	-	55	500	μΑ			
Junction capacitance	C _T	$V_{R} = 600 \text{ V}$	-	17	-	pF			
Series inductance	L _S	Measured lead to lead 5 mm from package body	-	8.0	-	nΗ			

DYNAMIC RECOVERY CHARACTERISTICS (T _C = 25 °C unless otherwise specified)									
PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN.	TYP.	MAX.	UNITS		
		$I_F = 1 \text{ A}, dI_F/dt = 100 \text{ A}$	/μs, V _R = 30 V	-	18	22			
Reverse recovery time	+	$I_F = 8 \text{ A}, dI_F/dt = 100 \text{ A}$	õs, V _R = 30 V	-	20	-	ne		
heverse recovery time	t _{rr}	T _J = 25 °C		-	25	-	ns		
		T _J = 125 °C	 I _F = 8 A dI _F /dt = 200 A/μs	-	40	-			
Peak recovery current	I _{RRM}	T _J = 25 °C		-	2.4	-	Α		
reak recovery current		T _J = 125 °C	$V_{\rm R} = 390 \text{ V}$	-	4.8	-	^		
Reverse recovery charge	0	T _J = 25 °C		-	25	-	nC		
neverse recovery charge	Q _{rr}	T _J = 125 °C		-	120	-	110		
Reverse recovery time	t _{rr}		I _F = 8 A	-	33	-	ns		
Peak recovery current	I _{RRM}	T _J = 125 °C	$dI_F/dt = 600 A/\mu s$	-	12	-	Α		
Reverse recovery charge	Q _{rr}		V _R = 390 V	-	220	-	nC		

THERMAL - MECHANICAL SPECIFICATIONS									
PARAMETER	ARAMETER SYMBOL TEST CONDITIONS					UNITS			
Maximum junction and storage temperature range	T _J , T _{Stg}		-65	-	175	°C			
Thermal resistance, junction to case per leg	R _{thJC}		-	1.4	2				
Thermal resistance, junction to ambient per leg	R _{thJA}	Typical socket mount	-	-	70	°C/W			
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth, and greased	-	0.5	-				
Woight			-	2.0	-	g			
Weight			-	0.07	-	oz.			
Mounting torque			6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)			
Mayling daving		Case style D ² PAK (TO-263AB)	8ETH06SH						
Marking device		Case style TO-262AA	8ETH06-1H						

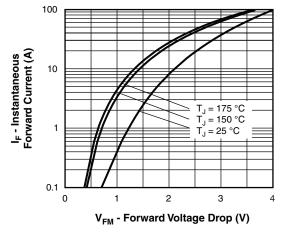


Fig. 1 - Maximum Forward Voltage Drop Characteristics

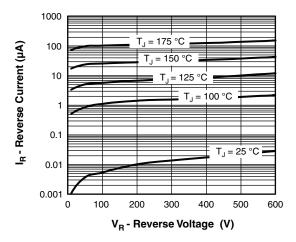


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

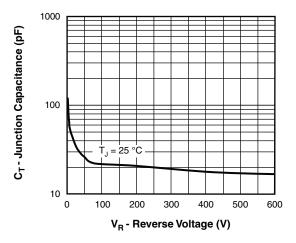


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

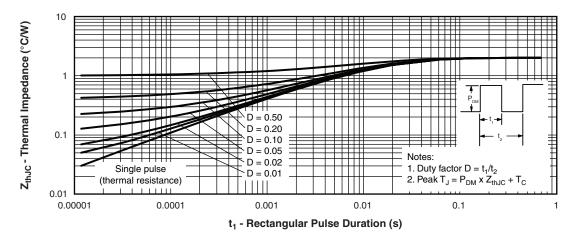


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

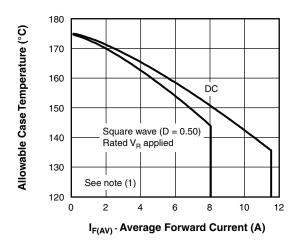


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

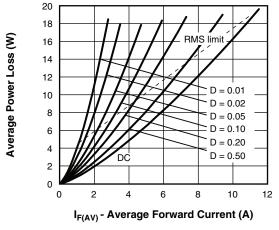
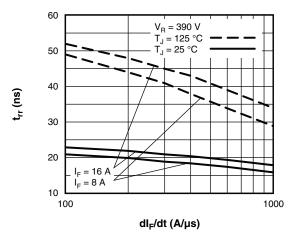
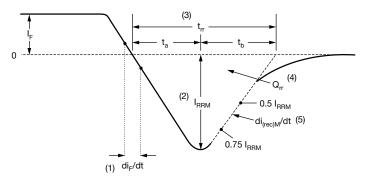



Fig. 6 - Forward Power Loss Characteristics

Note


⁽¹⁾ Formula used: T_C = T_J - (Pd + Pd_{REV}) x R_{thJC}; Pd = forward power loss = I_{F(AV)} x V_{FM} at (I_{F(AV)}/D) (see fig. 6); Pd_{REV} = inverse power loss = V_{R1} x I_R (1 - D); I_R at V_{R1} = rated V_R

400 V_R = 390 V 350 T_J = 125 °C $T_J = 25 \, ^{\circ}C$ 300 $I_F = 16 A$ 250 Q_{rr} (nC) $\dot{l_F} = 8 \text{ A}$ 200 150 100 50 0 100 1000 dl_F/dt (A/µs)

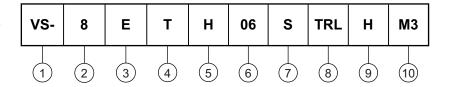
Fig. 7 - Typical Reverse Recovery Time vs. dl_F/dt

Fig. 8 - Typical Stored Charge vs. dl_F/dt

- (1) di_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- (3) t_{rr} reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through 0.75 I_{RRM} and 0.50 I_{RRM} extrapolated to zero current.
- (4) \mathbf{Q}_{rr} area under curve defined by \mathbf{t}_{rr} and \mathbf{I}_{RRM}

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(5) di_{(rec)M}/dt - peak rate of change of current during t_b portion of t_{rr}


Fig. 9 - Reverse Recovery Waveform and Definitions

VS-8ETH06SHM3, VS-8ETH06-1HM3

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Current rating (8 A)

3 - E = single diode

T = TO-220, D²PAK (TO-263AB)

5 - H = hyperfast rectifier

Voltage rating (06 = 600 V)

7 - • S = D^2PAK (TO-263AB)

• -1 = TO-262

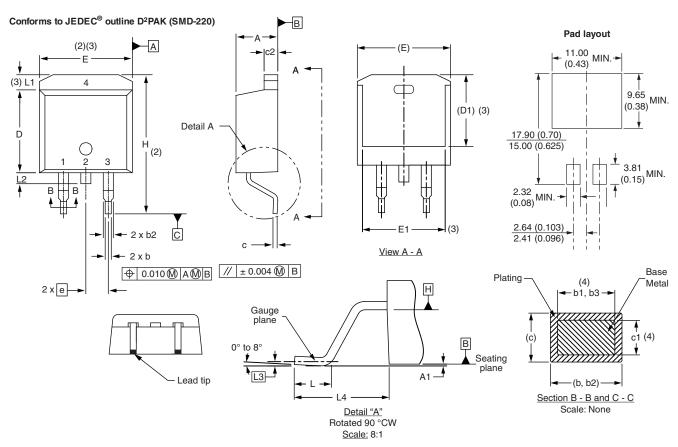
None = tube (50 pieces)

• TRL = tape and reel (left oriented, for D²PAK package)

• TRR = tape and reel (right oriented, for D²PAK package)

9 - H = AEC-Q101 qualufied

10 - M3 = halogen-free, RoHS-compliant, and terminations lead (Pb)-free

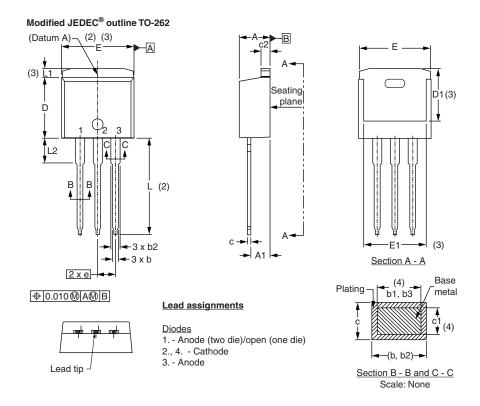

ORDERING INFORMATION (Example)							
PREFERRED P/N	BASE QUANTITY	PACKAGING DESCRIPTION					
VS-8ETH06SHM3	50	Antistatic plastic tube					
VS-8ETH06STRRHM3	800	13"diameter reel					
VS-8ETH06STRLHM3	800	13"diameter plastic reel					
VS-8ETH06-1HM3	50	Antistatic plastic tube					

LINKS TO RELATED DOCUMENTS						
Dimensions	D ² PAK (TO-263AB)	www.vishay.com/doc?95046				
Differisions	TO-262AA	www.vishay.com/doc?95419				
Part marking information	D ² PAK (TO-263AB)	www.vishay.com/doc?95444				
Fart marking information	TO-262AA	www.vishay.com/doc?95443				
Packaging information	D ² PAK (TO-263AB)	www.vishay.com/doc?95032				

D²PAK

DIMENSIONS in millimeters and inches

SYMBOL	MILLIM	MILLIMETERS		INCHES		S SYMBOL	MILLIM	ETERS	INC	HES	NOTES	
STIVIBUL	MIN.	MAX.	MIN.	MAX.	NOTES	NOTES	STWIDOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.06	4.83	0.160	0.190			D1	6.86	8.00	0.270	0.315	3
A1	0.00	0.254	0.000	0.010			Е	9.65	10.67	0.380	0.420	2, 3
b	0.51	0.99	0.020	0.039			E1	7.90	8.80	0.311	0.346	3
b1	0.51	0.89	0.020	0.035	4		е	2.54	BSC	0.100) BSC	
b2	1.14	1.78	0.045	0.070			Н	14.61	15.88	0.575	0.625	
b3	1.14	1.73	0.045	0.068	4		L	1.78	2.79	0.070	0.110	
С	0.38	0.74	0.015	0.029			L1	-	1.65	-	0.066	3
c1	0.38	0.58	0.015	0.023	4		L2	1.27	1.78	0.050	0.070	
c2	1.14	1.65	0.045	0.065			L3	0.25	BSC	0.010	BSC	
D	8.51	9.65	0.335	0.380	2		L4	4.78	5.28	0.188	0.208	


Notes

- (1) Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Datum A and B to be determined at datum plane H
- (6) Controlling dimension: inch
- (7) Outline conforms to JEDEC® outline TO-263AB

TO-262

DIMENSIONS in millimeters and inches

SYMBOL	MILLIM	IETERS	INC	HES	NOTES
STWIDOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.06	4.83	0.160	0.190	
A1	2.03	3.02	0.080	0.119	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
С	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54	BSC	0.10	D BSC	
L	13.46	14.10	0.530	0.555	
L1	-	1.65	-	0.065	3
L2	3.36	3.71	0.132	0.146	

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Controlling dimension: inches
- (6) Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum), D1 (minimum) and L2 where dimensions derived the actual package outline

Revision: 11-Jul-2019 1 Document Number: 95419

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.