
Vishay Semiconductors

Hyperfast Rectifier, 6 A FRED Pt[®]

www.vishay.com

SMPC (TO-277A)

LINKS TO ADDITIONAL RESOURCES

PRIMARY CHARACTERISTICS						
I _{F(AV)} 6 A						
V _R	600 V					
V _F at I _F	1.05 V					
t _{rr (typ.)}	33 ns					
T _J max.	175 °C					
Package	SMPC (TO-277A)					
Circuit configuration	Single					

FEATURES

Hyperfast recovery time, reduced Q_{rr}, and soft recovery

HALOGEN

FREE

- 175 °C maximum operating junction temperature
- For PFC, CRM/CCM, snubber operation
- Low forward voltage drop
- · Low leakage current
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Meets JESD 201 class 2 whisker test
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION / APPLICATIONS

State of the art hyperfast recovery rectifiers specifically designed with optimized performance of forward voltage drop and hyperfast recovery time.

The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness, and reliability characteristics.

These devices are intended for use in PFC, boost, lighting, in the AC/DC section of SMPS, freewheeling and clamp diodes.

The extremely optimized stored charge and low recovery current minimize the switching losses and reduce power dissipation in the switching element.

MECHANICAL DATA

Case: SMPC (TO-277A)

Molding compound meets UL 94 V-0 flammability rating Halogen-free, RoHS-compliant

Terminals: matte tin plated leads, solderable per J-STD-002

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Peak repetitive reverse voltage	V _{RRM}		600	V		
Average rectified forward current	I _{F(AV)}	T _{Sp} = 145 °C	6	٨		
Non-repetitive peak surge current	I _{FSM}	T _J = 25 °C	90	A		
Operating junction and storage temperatures	T _J , T _{Stg}		-65 to +175	°C		

ELECTRICAL SPECIFICATIONS ($T_J = 25 \text{ °C}$ unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Breakdown voltage, blocking voltage	V_{BR} , V_{R}	I _R = 100 μA	600	-	-	
Forward voltage	V _F	I _F = 6 A	-	1.30	1.80	V
		I _F = 6 A, T _J = 150 °C	-	1.05	1.55	
Reverse leakage current	I _R	$V_{R} = V_{R}$ rated	-	-	5	
neverse leakage current		$T_J = 150 \text{ °C}, V_R = V_R \text{ rated}$	-	50	300	μA
Junction capacitance	CT	V _R = 600 V	-	8	-	pF

Revision: 19-Jan-2021

1

Document Number: 94984

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 $^{\circ}$ C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
		$I_F = 1 \text{ A}, \text{ d}I_F/\text{d}t$	= 50 A/ μ s, V _R = 30 V	-	33	-	
Reverse recovery time	+	$I_F = 0.5 \text{ A}, I_R =$	I _F = 0.5 A, I _R = 1 A, I _{rr} = 0.25 A			40	20
Reverse recovery time	t _{rr}	T _J = 25 °C		-	40	-	A
		T _J = 125 °C	I _F = 6 A dI _F /dt = 500 A/μs V _R = 400 V	-	75	-	
Deals recovers ourrent		T _J = 25 °C		-	6.8	-	
Peak recovery current	I _{RRM}	T _J = 125 °C		-	11	-	A
	0	T _J = 25 °C		-	140	-	nC
Reverse recovery charge	Q _{rr}	$J_{\rm rr}$ T _J = 125 °C		-	400	-	nc

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Maximum junction and storage temperature range	T _J , T _{Stg}		-65	-	175	°C	
Thermal resistance, junction to mount	R _{thJM}		-	2.4	3.5	°C/W	
Approximate weight				0.1		g	
				0.0035		oz.	
Marking device		Case style SMPC (TO-277A)		NE	:H6		

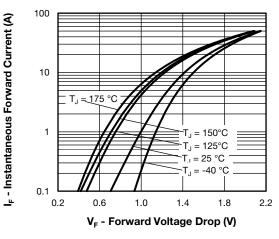


Fig. 1 - Typical Forward Voltage Drop Characteristics

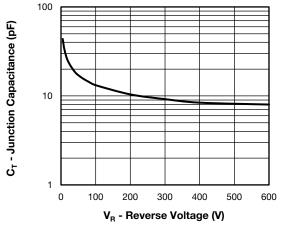



Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Vishay Semiconductors

www.vishay.com

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

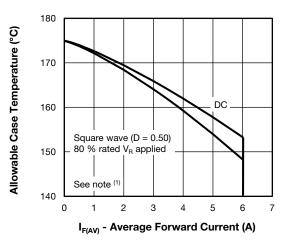


Fig. 4 - Maximum Allowable Case Temperature vs. Average Forward Current

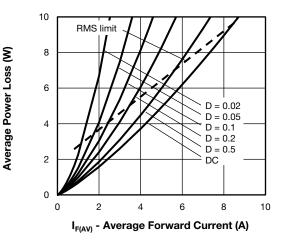


Fig. 5 - Forward Power Loss Characteristics

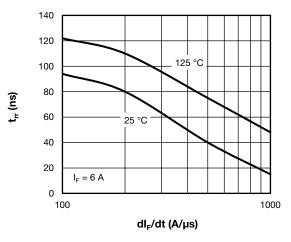


Fig. 6 - Typical Reverse Recovery Time vs. dI_F/dt

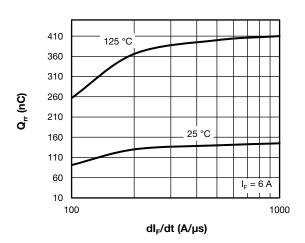


Fig. 7 - Typical Stored Charge vs. dl_F/dt

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

 $\begin{array}{l} \mathsf{Pd} = \mathsf{forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{5}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (1 - \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

Revision: 19-Jan-2021

3

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-6ESH06-M3

Vishay Semiconductors

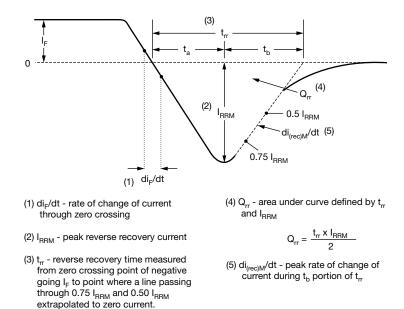


Fig. 8 - Reverse Recovery Waveform and Definitions

ORDERING INFORMATION TABLE

SHAY

www.vishay.com

Device code	VS-	6	Е	S	н	06	-M3
		2	3	4	5	6	7
	1 2 3	- Cur - Circ	rent rati cuit conf	niconduo ng (6 = 0 iguratior	6 A)	oduct	
		- S = - Pro	cess typ	package			
	6 · · · · · · · · · · · · · · · · · · ·	- Vol	tage coo	de (06 = gen-free	600 V)	complia	ant, and

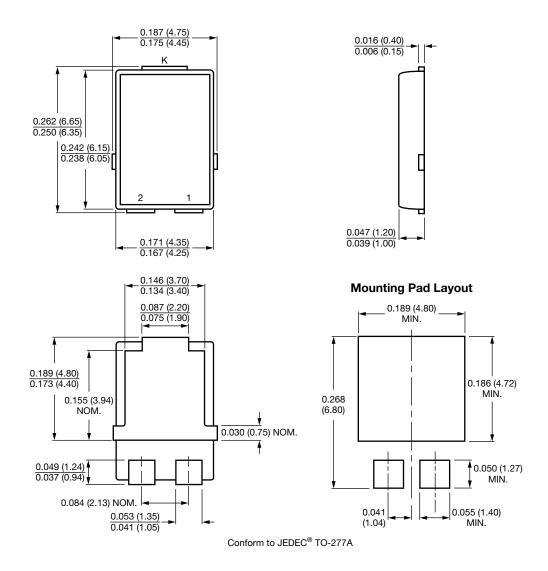
ORDERING INFORMATION (Example)							
PREFERRED P/N	QUANTITY PER REEL	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION				
VS-6ESH06-M3/86A	1500	1500	7" diameter plastic tape and reel				
VS-6ESH06-M3/87A	6500	6500	13" diameter plastic tape and reel				

LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95570				
Part marking information	www.vishay.com/doc?95565				
Packaging information	www.vishay.com/doc?88869				

Revision: 19-Jan-2021

Document Number: 94984

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>


Outline Dimensions

SMPC (TO-277A)

DIMENSIONS in inches (millimeters)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jul-2024