

www.vishay.com

Vishay Semiconductors

High Voltage Surface Mountable Input Rectifier Diode, 8 A

PRIMARY CHARACTERISTICS					
I _{F(AV)}	8 A				
V _R	800 V, 1200 V				
V _F at I _F	1.1 V				
I _{FSM}	150 A				
T _J max.	150 °C				
Package	DPAK (TO-252AA)				
Circuit configuration	Single				

FEATURES

- · Glass passivated pellet chip junction
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C

ROHS COMPLIANT HALOGEN FREE

APPLICATIONS

- · Input rectification
- Vishay Semiconductors switches and output rectifiers which are available in identical package outlines

DESCRIPTION

The VS-8EWS..S-M3 rectifier high voltage series has been optimized for very low forward voltage drop, with moderate leakage. The glass passivation technology used has reliable operation up to 150 °C junction temperature.

The **high reverse voltage** range available allows design of input stage primary rectification with **outstanding voltage surge** capability.

OUTPUT CURRENT IN TYPICAL APPLICATIONS						
APPLICATIONS SINGLE-PHASE BRIDGE THREE-PHASE BRIDGE UNITS						
NEMA FR-4 or G10 glass fabric-based epoxy with 4 oz. (140 μm) copper	1.2	A				
Aluminum IMS, R _{thCA} = 15 °C/W	2.5	2.8	A			
Aluminum IMS with heatsink, R _{thCA} = 5 °C/W	5.5	6.5				

Note

• $T_A = 55$ °C, $T_J = 125$ °C, footprint 300 mm²

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
I _{F(AV)}	Sinusoidal waveform	8	A			
V_{RRM}		800/1200	V			
I _{FSM}		150	A			
V _F	8 A, T _J = 25 °C	1.10	V			
TJ		-55 to +150	°C			

VOLTAGE RATINGS						
PART NUMBER	I _{RRM} AT 150 °C mA					
VS-8EWS08S-M3	800	900	0.5			
VS-8EWS12S-M3	1200	1300	0.5			

VS-8EWS08S-M3, VS-8EWS12S-M3

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum average forward current	I _{F(AV)}	$T_C = 105$ °C, 180° conduction half sine wave	8		
Maximum peak one cycle		10 ms sine pulse, rated V _{RRM} applied	125	Α	
non-repetitive surge current	I _{FSM}	10 ms sine pulse, no voltage reapplied 150			
Maximum I ² t for fusing I ² t		10 ms sine pulse, rated V _{RRM} applied	78	A ² s	
IVIAXIIIIUIII I-t for fusiing	1-1	10 ms sine pulse, no voltage reapplied 110		7.9	
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms to 10 ms, no voltage reapplied	1100	A ² √s	

ELECTRICAL SPECIFICATIONS						
PARAMETER SYMBOL TEST CONDITIONS VALUES UNITS						
Maximum forward voltage drop	V_{FM}	8 A, T _J	1.1	V		
Forward slope resistance	r _t	T _{.1} = 150 °C		20	mΩ	
Threshold voltage	$V_{F(TO)}$	ı j = 1	0.82	V		
Maximum rayaraa laakaga aurrant		T _J = 25 °C		0.05	mΛ	
Maximum reverse leakage current	I _{RM}	T _J = 150 °C	V _R = Rated V _{RRM}	0.50	mA mA	

THERMAL - MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and storage temperature range	T _J , T _{Stg}		-55 to +150	°C	
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	2.5	°C/W	
Typical thermal resistance, junction to ambient (PCB mount)	R _{thJA} ⁽¹⁾		62	O/ VV	
Approximate weight			1	g	
Approximate weight			0.03	OZ.	
Madin de la		Occasion to DDAIK (TO OFGAA)	8EWS08S		
Marking device		Case style DPAK (TO-252AA)	8EWS12S		

Note

⁽¹⁾ When mounted on 1" square (650 mm²) PCB of FR-4 or G-10 material 4 oz. (140 µm) copper 40 °C/W For recommended footprint and soldering techniques refer to application note #AN-994

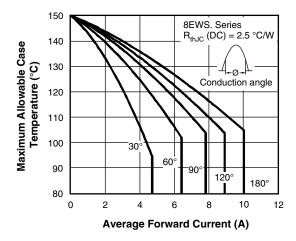


Fig. 1 - Current Rating Characteristics

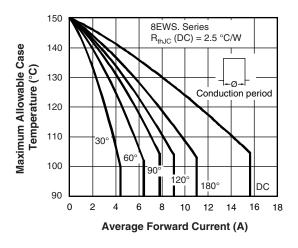


Fig. 2 - Current Rating Characteristics

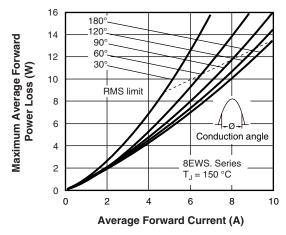


Fig. 3 - Forward Power Loss Characteristics

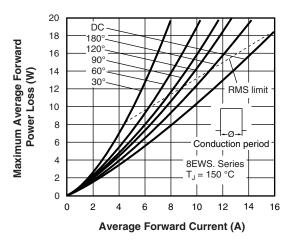


Fig. 4 - Forward Power Loss Characteristics

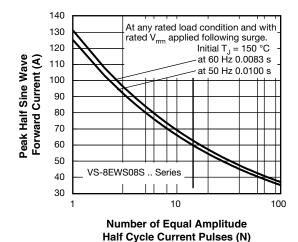


Fig. 5 - Maximum Non-Repetitive Surge Current

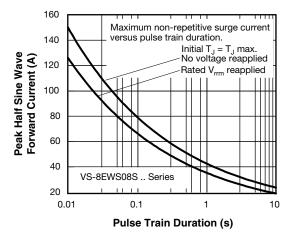


Fig. 6 - Maximum Non-Repetitive Surge Current

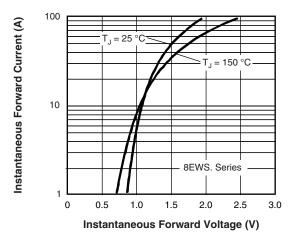


Fig. 7 - Forward Voltage Drop Characteristics

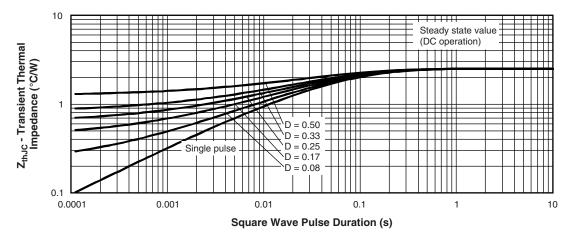
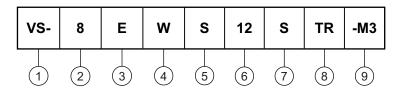



Fig. 8 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Current rating (8 = 8 A)

3 - Circuit configuration:

E = single diode

4 - Package:

W = D-PAK

5 - Type of silicon:

S = standard recovery rectifier

6 - Voltage code x 100 = V_{RRM} - 08 = 800 V 12 = 1200 V

7 - S = surface mountable

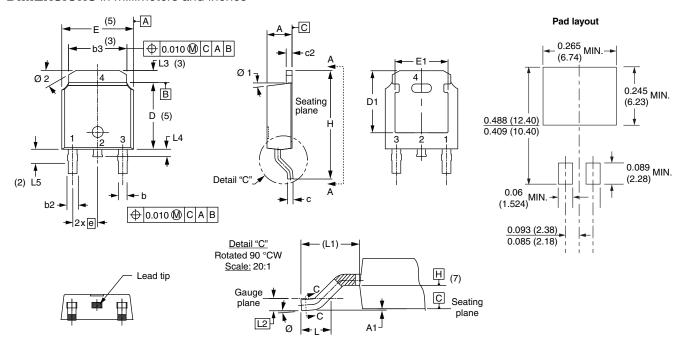
8 - • TR = tape and reel

• TRR = tape and reel (right oriented)

• TRL = tape and reel (left oriented)

9 - Environmental digit:

-M3 = halogen-free, RoHS-compliant, and terminations lead (Pb)-free


ORDERING INFORMATION (Example)						
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION			
VS-8EWS08S-M3	75	3000	Antistatic plastic tubes			
VS-8EWS08STR-M3	2000	2000	13" diameter reel			
VS-8EWS08STRL-M3	3000	3000	13" diameter reel			
VS-8EWS08STRR-M3	3000	3000	13" diameter reel			
VS-8EWS12S-M3	75	3000	Antistatic plastic tubes			
VS-8EWS12STR-M3	2000	2000	13" diameter reel			
VS-8EWS12STRL-M3	3000	3000	13" diameter reel			
VS-8EWS12STRR-M3	3000	3000	13" diameter reel			

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95627			
Part marking information	www.vishay.com/doc?95176			
Packaging information	www.vishay.com/doc?95033			
SPICE model	www.vishay.com/doc?96668			

D-PAK (TO-252AA) "M"

DIMENSIONS in millimeters and inches

SYMBOL	MILLIN	IETERS	RS INCHES		NOTES
STIVIBUL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	2.18	2.39	0.086	0.094	
A1	-	0.13	-	0.005	
b	0.64	0.89	0.025	0.035	
b2	0.76	1.14	0.030	0.045	
b3	4.95	5.46	0.195	0.215	3
С	0.46	0.61	0.018	0.024	
c2	0.46	0.89	0.018	0.035	
D	5.97	6.22	0.235	0.245	5
D1	5.21	-	0.205	1	3
Е	6.35	6.73	0.250	0.265	5
E1	4.32	-	0.170	-	3

SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STINIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
е	2.29	BSC	0.090	BSC	
Н	9.40	10.41	0.370	0.410	
L	1.40	1.78	0.055	0.070	
L1	2.74 BSC		0.108 REF.		
L2	0.51	BSC	0.020 BSC		
L3	0.89	1.27	0.035	0.050	3
L4	-	1.02	-	0.040	
L5	1.14	1.52	0.045	0.060	2
Ø	0°	10°	0°	10°	
Ø1	0°	15°	0°	15°	
Ø2	25°	35°	25°	35°	

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Lead dimension uncontrolled in L5
- (3) Dimension D1, E1, L3 and b3 establish a minimum mounting surface for thermal pad
- (4) Section C C dimension apply to the flat section of the lead between 0.13 and 0.25 mm (0.005 and 0.10") from the lead tip
- (5) Dimension D, and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (6) Dimension b1 and c1 applied to base metal only
- (7) Datum A and B to be determined at datum plane H
- (8) Outline conforms to JEDEC® outline TO-252AA

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.