Vishay Semiconductors

Hyperfast Rectifier, 15 A FRED Pt[®]

VS-15ETH06FP-N3

PRIMARY CHARACTERISTICS				
I _{F(AV)}	15 A			
V _R	600 V			
V _F at I _F	1.3 V			
t _{rr} typ.	22 ns			
T _J max.	175 °C			
Package	TO-220 FullPAK 2L			
Circuit configuration	Single			

FEATURES

- · Hyperfast recovery time
- Low forward voltage drop
- 175 °C operating junction temperature
- Low leakage current
- Single die center tap module
- Fully isolated package (V_{INS} = 2500 V_{RMS})
- Designed and qualified according to JEDEC[®]-JESD 47
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION / APPLICATIONS

State of the art hyperfast recovery rectifiers designed with optimized performance of forward voltage drop, hyperfast recovery time, and soft recovery.

The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in PFC boost stage in the AC/DC section of SMPS, inverters or as freewheeling diodes.

Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

ABSOLUTE MAXIMUM RATINGS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Peak repetitive reverse voltage	V _{RRM}		600	V
Average rectified forward current	I _{F(AV)}	$T_{\rm C} = 80 \ ^{\circ}{\rm C}$	15	
Non-repetitive peak surge current	I _{FSM}	T _J = 25 °C	180	А
Peak repetitive forward current	I _{FM}		30	
Operating junction and storage temperatures	T _J , T _{Stg}		-65 to +175	°C

ELECTRICAL SPECIFICATIONS ($T_J = 25$ °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Breakdown voltage, blocking voltage	V_{BR}, V_{R}	I _R = 100 μA	600	-	-	
Forward voltage	V	I _F = 15 A	-	1.8	2.2	V
Forward voltage V _F	۷F	I _F = 15 A, T _J = 150 °C	-	1.3	1.6	
Reverse leakage ourrent	1	$V_{R} = V_{R}$ rated	-	0.2	50	
Reverse leakage current I _R		$T_J = 150 \text{ °C}, V_R = V_R \text{ rated}$	-	30	500	μA
Junction capacitance	CT	V _R = 600 V	-	20	-	pF
Series inductance	L _S	Measured lead to lead 5 mm from package body	-	8.0	-	nH

Revision: 01-Aug-2023 Document Number: 96426 1 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

www.vishay.com

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS ($T_c = 25$ °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
		I _F = 1 A, dI _F /dt = 100 A/μs, V _R = 30 V		-	22	30	
Reverse recovery time	+	$I_F = 15 \text{ A}, \text{ d}I_F/\text{d}t = 100 \text{ A}/\mu\text{s}, V_R = 30 \text{ V}$		-	28	35	
neverse recovery time	t _{rr}	T _J = 25 °C		-	29	-	ns
		T _J = 125 °C	I _F = 15 A dI _F /dt = 200 A/µs	-	75	-	
Poak rocovary ourrant	eak recovery current	T _J = 25 °C		-	3.5	-	А
Feak recovery current		IRRM	T _J = 125 °C	$V_{\rm B} = 390 \text{ V}$	-	7	-
Boyorga racovany abarga	Q _{rr}	T _J = 25 °C	VR - 000 V	-	57	-	nC
Reverse recovery charge Q _{rr}		T _J = 125 °C		-	300	-	no
Reverse recovery time	t _{rr}	T _J = 125 °C	l _F = 15 A dl _F /dt = 800 A/μs	-	51	-	ns
Peak recovery current	I _{RRM}			-	20	-	А
Reverse recovery charge	Q _{rr}		V _R = 390 V	-	580	-	nC

THERMAL MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Maximum junction and storage temperature range	T _J , T _{Stg}		-65	-	175	°C
Thermal resistance, junction-to-case	R _{thJC}		-	3.0	3.5	
Thermal resistance, junction-to-ambient per leg	R _{thJA}	Typical socket mount	-	-	70	°C/W
Thermal resistance, case-to-heatsink	R _{thCS}	Mounting surface, flat, smooth, and greased	-	0.5	-	
Weight			-	2.0	-	g
weight			-	0.07	-	oz.
Mounting torque			6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)
Marking device		Case style TO-220 FullPAK 2L	15ETH06FP			

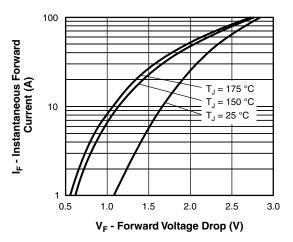


Fig. 1 - Typical Forward Voltage Drop Characteristics

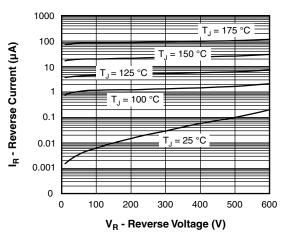


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-15ETH06FP-N3

Vishay Semiconductors

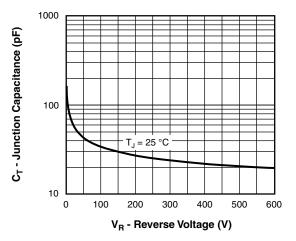


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

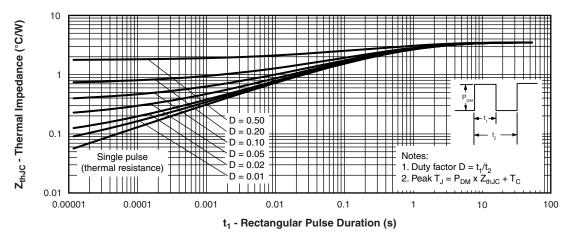
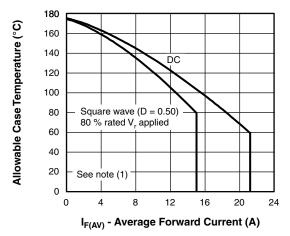
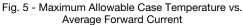
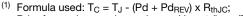





Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics

Note

 $\begin{array}{l} \mathsf{Pd} = \mathsf{forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \, x \ \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{5}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \, x \ \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} - \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

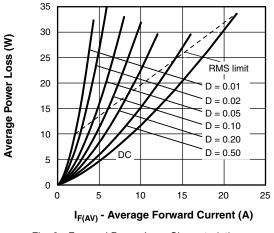


Fig. 6 - Forward Power Loss Characteristics

Revision: 01-Aug-2023

3

Document Number: 96426

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

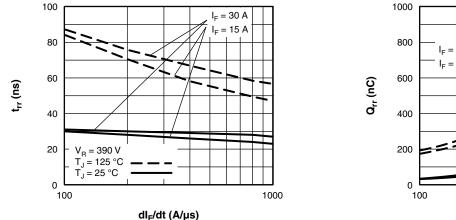


Fig. 7 - Typical Reverse Recovery Time vs. dl_F/dt

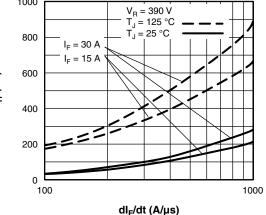


Fig. 8 - Typical Stored Charge vs. dl_F/dt

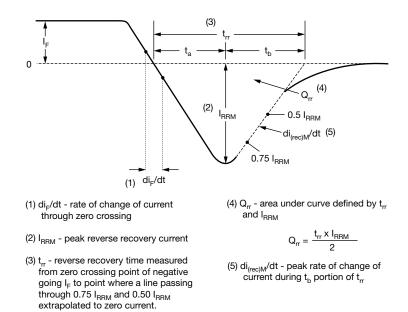
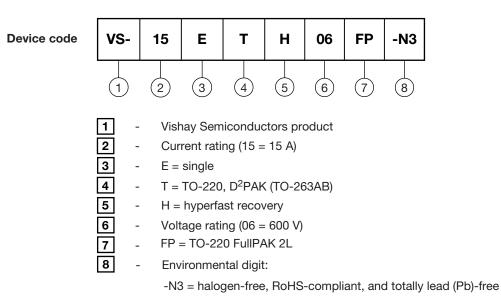
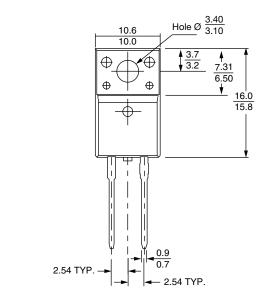
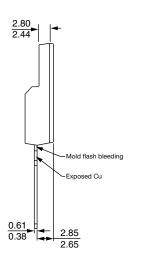



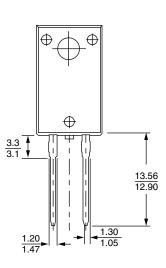
Fig. 9 - Reverse Recovery Waveform and Definitions

ORDERING INFORMATION TABLE

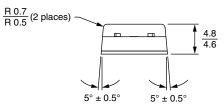
ORDERING INFORMATION (Example)					
QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION			
50	1000	Antistatic plastic tube			
	QUANTITY PER T/R	QUANTITY PER T/R MINIMUM ORDER QUANTITY			


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?96157			
Part marking information	www.vishay.com/doc?95392			
SPICE model	www.vishay.com/doc?96618			




Vishay Semiconductors

2L TO-220 FullPAK


DIMENSIONS in millimeters

Bottom view

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jul-2024