

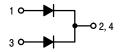
Switch-mode Power Rectifier

Dual Schottky Rectifier

MBR20200CT

Features and Benefits

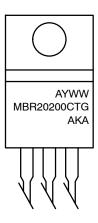
- Low Forward Voltage
- Low Power Loss/High Efficiency
- High Surge Capacity
- 175°C Operating Junction Temperature
- 20 A Total (10 A Per Diode Leg)
- This is a Pb-Free Device*


Applications

- Power Supply Output Rectification
- Power Management
- Instrumentation

Mechanical Characteristics

- Case: Epoxy, Molded
- Epoxy Meets UL 94, V-0 @ 0.125 in
- Weight: 1.9 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperatures for Soldering Purposes: 260°C Max. for 10 Seconds
- ESD Rating: Human Body Model 3B Machine Model C


SCHOTTKY BARRIER RECTIFIER 20 AMPERES, 200 VOLTS

TO-220 CASE 221A PLASTIC STYLE 6

MARKING DIAGRAM

A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package
AKA = Diode Polarity

ORDERING INFORMATION

Device	Package	Shipping
MBR20200CTG	TO-220 (Pb-Free)	50 Units / Tube

1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MBR20200CT

MAXIMUM RATINGS (Per Leg)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	V
Average Rectified Forward Current (T _C = 161°C) Per Leg Per Package	I _{F(AV)}	10 20	Α
Peak Repetitive Forward Current per Leg (Square Wave, 20 kHz, T _C = 158°C)	I _{FRM}	20	Α
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	Α
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	1.0	Α
Storage Temperature Range	T _{stg}	−65 to +175	°C
Operating Junction Temperature	T_J	-65 to +175	°C
Voltage Rate of Change (Rated V _R)	dv/dt	10,000	V/μs

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Condition	Symbol	Value	Unit
Maximum Thermal Resistance, Junction-to-Case	Minimum Pad	$R_{\theta JC}$	2.0	°C/W
Maximum Thermal Resistance, Junction-to-Ambient	Minimum Pad	$R_{\theta JA}$	60.0	°C/W

ELECTRICAL CHARACTERISTICS (Per Leg)

Characteristic	Symbol	Min	Typical	Max	Unit
Maximum Instantaneous Forward Voltage (Note 1) ($I_F = 10 \text{ A}, T_J = 25^{\circ}\text{C}$) ($I_F = 10 \text{ A}, T_J = 125^{\circ}\text{C}$) ($I_F = 20 \text{ A}, T_J = 25^{\circ}\text{C}$) ($I_F = 20 \text{ A}, T_J = 125^{\circ}\text{C}$) ($I_F = 20 \text{ A}, T_J = 125^{\circ}\text{C}$)	V _F	1 1 1	0.80 0.66 0.89 0.76	0.90 0.80 1.00 0.90	٧
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, T_J = 25°C) (Rated dc Voltage, T_J = 125°C)	I _R		0.0002 0.4	1.0 50	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

DYNAMIC CHARACTERISTICS (Per Leg)

Characteristic	Symbol	Value	Unit
Capacitance (V _R = -5.0 V, T _C = 25°C, Frequency = 1.0 MHz)	C _T	500	pF

^{1.} Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤[2.0%.

MBR20200CT

TYPICAL CHARACTERISTICS

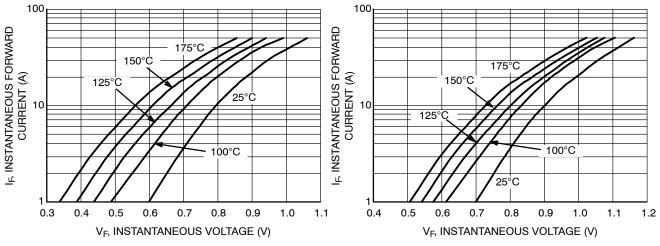


Figure 1. Typical Forward Voltage

Figure 2. Maximum Forward Voltage

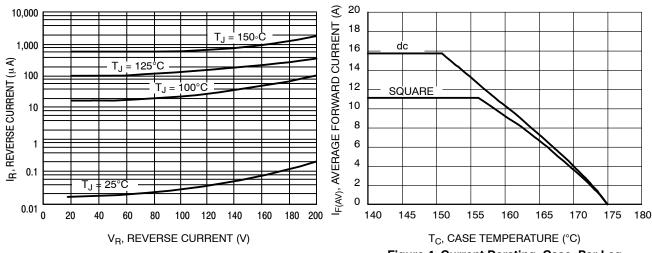


Figure 3. Typical Reverse Current (Per Leg)

Figure 4. Current Derating, Case, Per Leg

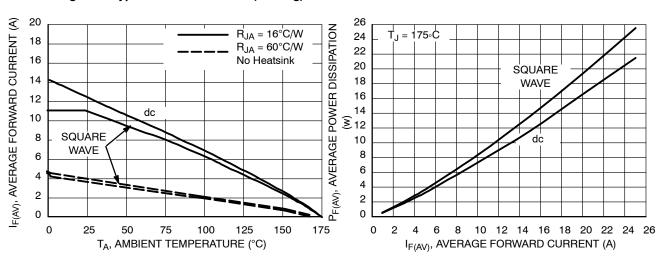


Figure 5. Current Derating, Ambient, Per Leg

Figure 6. Forward Power Dissipation

MBR20200CT

TYPICAL CHARACTERISTICS (CONTINUED)

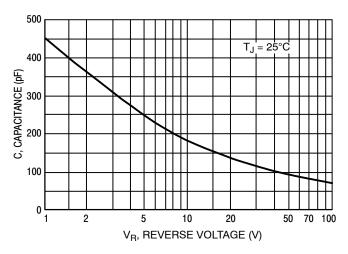


Figure 7. Typical Capacitance (Per Leg)

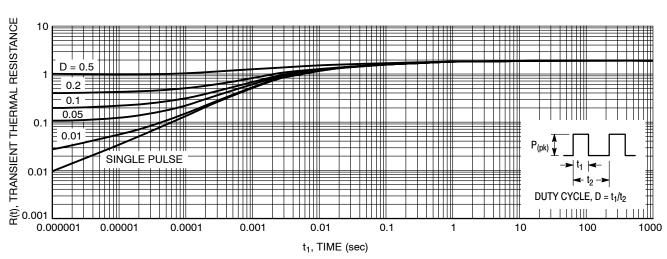
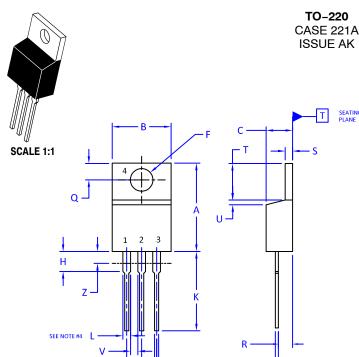



Figure 8. Thermal Response Junction-to-Case

CASE 221A

DATE 13 JAN 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INCHES		MILLIMI	ETERS
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 1: PIN 1. 2. 3. 4.	BASE COLLECTOR EMITTER COLLECTOR	STYLE 2: PIN 1. 2. 3. 4.		STYLE 3: PIN 1. 2. 3. 4.	CATHODE ANODE GATE ANODE	STYLE 4: PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
STYLE 5: PIN 1. 2. 3. 4.	GATE DRAIN SOURCE DRAIN	STYLE 6: PIN 1. 2. 3. 4.	ANODE CATHODE ANODE CATHODE	STYLE 7: PIN 1. 2. 3. 4.	ANODE	2. 3.	CATHODE ANODE EXTERNAL TRIP/DELAY ANODE
STYLE 9: PIN 1. 2. 3. 4.	GATE COLLECTOR EMITTER COLLECTOR	STYLE 10: PIN 1. 2. 3. 4.	GATE	STYLE 11: PIN 1. 2. 3. 4.		STYLE 12 PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220		PAGE 1 OF 1	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales