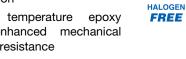


www.vishay.com

Vishay Semiconductors


High Performance Schottky Rectifier, 2 x 15 A

PRIMARY CHARACTERISTICS						
I _{F(AV)}	2 x 15 A					
V_{R}	25 V, 30 V					
V _F at I _F	0.40 V					
I _{RM} typ.	97 mA at 125°C					
T _J max.	150 °C					
E _{AS}	13 mJ					
Package	D ² PAK (TO-263AB), TO-262AA					
Circuit configuration	Common cathode					

FEATURES

- 150 °C T_{.I} operation
- Low forward voltage drop
- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance

COMPLIANT

- Guard ring for enhanced ruggedness and long term reliability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 245 °C
- Designed and qualified according to JEDEC®-JESD 47
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

The VS-32CTQ... Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

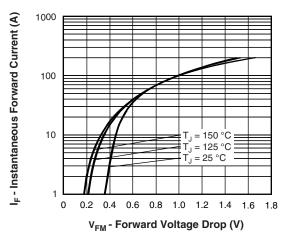
MAJOR RATINGS AND CHARACTERISTICS									
SYMBOL CHARACTERISTICS VALUES UNITS									
I _{F(AV)}	Rectangular waveform	30	A						
V _{RRM}		25, 30	V						
I _{FSM}	t _p = 5 μs sine	900	A						
V _F	15 A _{pk} , T _J = 125 °C	0.40	V						
TJ	Range	-55 to +150	°C						

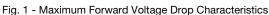
VOLTAGE RATINGS								
PARAMETER	SYMBOL	VS-32CTQ025S-M3 VS-32CTQ025-1-M3	VS-32CTQ030S-M3 VS-32CTQ030-1-M3	UNITS				
Maximum DC reverse voltage	V_{R}	25	30	V				
Maximum working peak reverse voltage	V_{RWM}	25	30	V				

VS-32CTQ...S-M3, VS-32CTQ...-1-M3 Series

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS									
PARAMETER	SYMBOL	TEST COND	ITIONS	VALUES	UNITS				
Maximum average forward current See fig. 5	I _{F(AV)}	50 % duty cycle at T _C = 115 °C	30						
Maximum peak one cycle non-repetitive		5 μs sine or 3 μs rect. pulse Following any rated load		900	Α				
surge current See fig. 7	I _{FSM}	10 ms sine or 6 ms rect. pulse	condition and with rated V _{RRM} applied	250					
Non-repetitive avalanche energy	E _{AS}	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1.20 \text{A}, L = 11 \text{C}$	13	mJ					
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero Frequency limited by T_J maxim	3	Α					


ELECTRICAL SPECIFICATIONS								
PARAMETER	SYMBOL	TEST CO	TEST CONDITIONS					
		15 A	T _{.1} = 25 °C	0.49	V			
Maximum forward voltage drop	V _{FM} ⁽¹⁾	30 A	1J=25 C	0.58				
See fig. 1	VFM (1)	15 A	T _{.1} = 125 °C	0.40				
		30 A	1j = 125 C	0.53				
Marian and an arrange lands are assument	I _{RM} ⁽¹⁾	T _J = 25 °C	V _B = Rated V _B	1.75	mA			
Maximum reverse leakage current	IRM (1)	T _J = 125 °C	V _R = nateu v _R	145				
Typical reverse leakage current	I _{RM} ⁽¹⁾	T _J = 125 °C	V _R = Rated V _R	97	mA			
Threshold voltage	V _{F(TO)}	T - T movimum		0.233	V			
Forward slope resistance	r _t	ij = ij maximum	$T_J = T_J$ maximum		mΩ			
Maximum junction capacitance per leg	C _T	V _R = 5 V _{DC} (test signal range	1300	pF				
Typical series inductance per leg	L _S	Measured lead to lead 5 mr	8.0	nΗ				
Maximum voltage rate of change	dV/dt	Rated V _R		10 000	V/µs			


Note

 $^{^{(1)}}$ Pulse width < 300 μ s, duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS								
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum junction and storage temperature range		T _J , T _{Stg}		-55 to +150	°C			
Maximum thermal resistance, junction to case per leg			DC operation See fig. 4	3.25	°C/W			
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.50				
Approximate weight				2	g			
Approximate weight				0.07	OZ.			
Mounting torque	minimum			6 (5)	kgf · cm			
Mounting torque	maximum			12 (10)	(lbf \cdot in)			
			Case style D ² PAK (TO-263AB)	32CT0	Q025S			
Marking device			Case style D-PAR (10-203AD)	32CT0	Q03 <mark>0S</mark>			
			Coop ot do TO 262AA	32CTC	025-1			
			Case style TO-262AA	32CTC	030-1			

Vishay Semiconductors

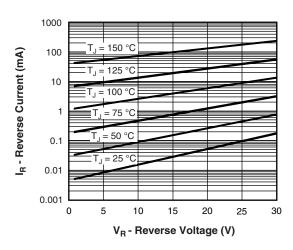


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

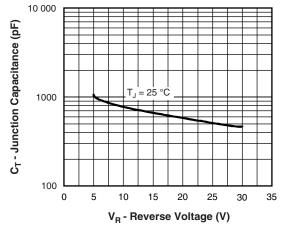


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

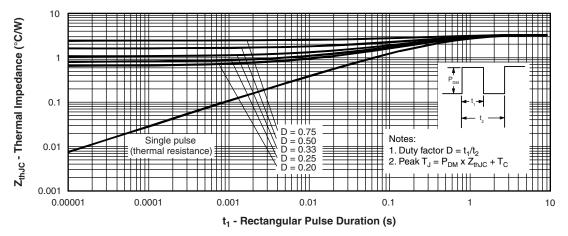


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

Allowable Case Temperature (°C)

www.vishay.com

Vishay Semiconductors

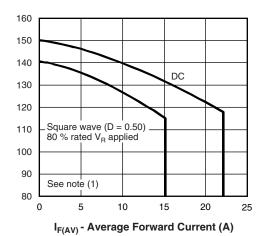


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

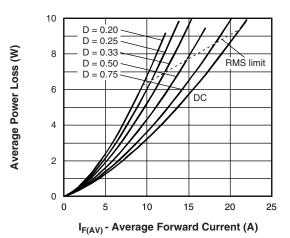


Fig. 6 - Forward Power Loss Characteristics

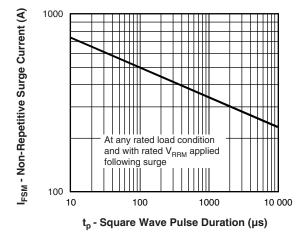


Fig. 7 - Maximum Non-Repetitive Surge Current

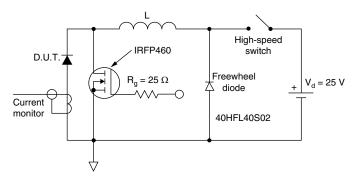
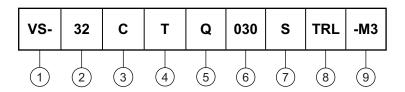


Fig. 8 - Unclamped Inductive Test Circuit

Note


(1) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{th,JC}$; $Pd = forward power loss = I_{F(AV)} \times V_{FM} at (I_{F(AV)}/D)$ (see fig. 6); $Pd_{REV} = inverse power loss = V_{R1} \times I_R (1 - D)$; I_R at $V_{R1} = 80 \%$ rated V_R

VS-32CTQ...S-M3, VS-32CTQ...-1-M3 Series

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Current rating (30 A)

Circuit configuration: C = common cathode

4 - T = TO-220

Schottky "Q" series

- Voltage ratings 025 = 25 V 030 = 30 V

7 - • S = D^2PAK (TO-263AB)

• -1 = TO-262AA

8 - • None = tube

• TRL = tape and reel (left oriented - for D²PAK (TO-263AB) only)

• TRR = tape and reel (right oriented - for D²PAK (TO-263AB) only)

9 - -M3 = halogen-free, RoHS-compliant, and termination lead (Pb)-free

ORDERING INFORMATION								
PREFERRED P/N	BASE QUANTITY	PACKAGING DESCRIPTION						
VS-32CTQ025S-M3	50	Antistatic plastic tubes						
VS-32CTQ025STRL-M3	800	13" diameter plastic tape and reel						
VS-32CTQ025STRR-M3	800	13" diameter plastic tape and reel						
VS-32CTQ030S-M3	50	Antistatic plastic tubes						
VS-32CTQ030STRL-M3	800	13" diameter plastic tape and reel						
VS-32CTQ030STRR-M3	800	13" diameter plastic tape and reel						
VS-32CTQ025-1-M3	50	Antistatic plastic tubes						
VS-32CTQ030-1-M3	50	Antistatic plastic tubes						

LINKS TO RELATED DOCUMENTS						
Dimensions	D ² PAK (TO-263AB)	www.vishay.com/doc?96164				
Differsions	TO-262AA	www.vishay.com/doc?96165				
Part marking information	D ² PAK (TO-263AB)	www.vishay.com/doc?95444				
Part marking information	TO-262AA	www.vishay.com/doc?95443				
Packaging information		www.vishay.com/doc?96424				

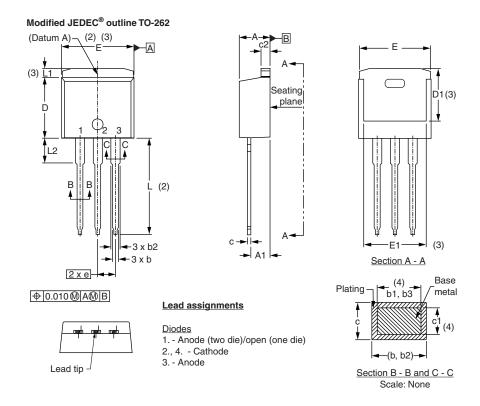
Vishay Semiconductors

D²PAK

DIMENSIONS in millimeters and inches

SYMBOL	MILLIMETERS		INC	INCHES		OTES SYMBOL	MILLIM	ETERS	INC	HES	NOTES	
STIVIBUL	MIN.	MAX.	MIN.	MAX.	NOIES	NOIES	STWIDOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.06	4.83	0.160	0.190			D1	6.86	8.00	0.270	0.315	3
A1	0.00	0.254	0.000	0.010			Е	9.65	10.67	0.380	0.420	2, 3
b	0.51	0.99	0.020	0.039			E1	7.90	8.80	0.311	0.346	3
b1	0.51	0.89	0.020	0.035	4		е	2.54	BSC	0.100) BSC	
b2	1.14	1.78	0.045	0.070			Н	14.61	15.88	0.575	0.625	
b3	1.14	1.73	0.045	0.068	4		L	1.78	2.79	0.070	0.110	
С	0.38	0.74	0.015	0.029			L1	-	1.65	-	0.066	3
c1	0.38	0.58	0.015	0.023	4		L2	1.27	1.78	0.050	0.070	
c2	1.14	1.65	0.045	0.065			L3	0.25	BSC	0.010	BSC	
D	8.51	9.65	0.335	0.380	2		L4	4.78	5.28	0.188	0.208	

Notes


- (1) Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Datum A and B to be determined at datum plane H
- (6) Controlling dimension: inch
- (7) Outline conforms to JEDEC® outline TO-263AB

Vishay Semiconductors

TO-262

DIMENSIONS in millimeters and inches

SYMBOL	MILLIM	IETERS	INC	INCHES		
STWIDOL	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	4.06	4.83	0.160	0.190		
A1	2.03	3.02	0.080	0.119		
b	0.51	0.99	0.020	0.039		
b1	0.51	0.89	0.020	0.035	4	
b2	1.14	1.78	0.045	0.070		
b3	1.14	1.73	0.045	0.068	4	
С	0.38	0.74	0.015	0.029		
c1	0.38	0.58	0.015	0.023	4	
c2	1.14	1.65	0.045	0.065		
D	8.51	9.65	0.335	0.380	2	
D1	6.86	8.00	0.270	0.315	3	
E	9.65	10.67	0.380	0.420	2, 3	
E1	7.90	8.80	0.311	0.346	3	
е	2.54 BSC		0.10	D BSC		
L	13.46	14.10	0.530	0.555		
L1	-	1.65	-	0.065	3	
L2	3.36	3.71	0.132	0.146		

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Controlling dimension: inches
- (6) Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum), D1 (minimum) and L2 where dimensions derived the actual package outline

Revision: 11-Jul-2019 1 Document Number: 95419

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.