
VS-HFA16TA60C-M3

Vishay Semiconductors

HEXFRED[®] Ultrafast Soft Recovery Diode, 2 x 8 A

www.vishay.com

PRIMARY CHARACTERISTICS					
I _{F(AV)}	2 x 8 A				
V _R	600 V				
V _F at I _F	1.4 V				
t _{rr} typ.	18 ns				
T _J max.	150 °C				
Package	TO-220AB 3L				
Circuit configuration	Common cathode				

FEATURES

- Ultrafast and ultrasoft recovery
- Very low I_{RRM} and Q_{rr}
- Designed and qualified according to JEDEC[®]-JESD 47
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

BENEFITS

- Reduced RFI and EMI
- Reduced power loss in diode and switching transistor
- Higher frequency operation
- Reduced snubbing
- Reduced parts count

DESCRIPTION

VS-HFA16TA60C... is a state of the art center tap ultrafast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 V and 8 A per leg continuous current, the VS-HFA16TA60C... is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultrafast recovery time, the HEXFRED® product line features extremely low values of peak recovery current (I_{RRM}) and does not exhibit any tendency to "snap-off" during the t_b portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED VS-HFA16TA60C... is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Cathode to anode voltage	V _R		600	V			
Maximum continuous forward currentper leg		T _C = 100 °C	8				
per device	I _F	1C = 100 C	16	А			
Single pulse forward current	I _{FSM}		60	A			
Maximum repetitive forward current	I _{FRM}		24				
Maximum power discinction	D _	T _C = 25 °C	36	W			
Maximum power dissipation	PD	T _C = 100 °C	14	vv			
Operating junction and storage temperature range	T _J , T _{Stg}		-55 to +150	°C			

Revision: 16-Dec-2021

Document Number: 96203

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1

VS-HFA16TA60C-M3

www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS PER LEG ($T_J = 25 \text{ °C}$ unless otherwise specified)								
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS	
Cathode to anode breakdown voltage	V _{BR}	I _R = 100 μA		600	-	-		
	I _F = 8 A			-	1.4	1.7	V	
Maximum forward voltage	V _{FM}	I _F = 16 A	See fig. 1	-	1.7	2.1		
		I _F = 8 A, T _J = 125 °C		-	1.4	1.7		
Maximum reverse		$V_{R} = V_{R}$ rated	See fig. 0	-	0.3	5.0		
leakage current	I _{RM}	$T_J = 125 \text{ °C}, V_R = 0.8 \text{ x } V_R \text{ rated}$	See fig. 2	-	100	500	μA	
Junction capacitance	CT	V _R = 200 V	See fig. 3	-	10	25	pF	
Series inductance	L _S	Measured lead to lead 5 mm from p	ackage body	-	8.0	-	nH	

DYNAMIC RECOVERY CHARACTERISTICS PER LEG ($T_J = 25$ °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN.	TYP.	MAX.	UNITS	
Reverse recovery time See fig. 5 and fig. 10	t _{rr}	$I_F = 1.0 \text{ A}, dI_F/dt = 200$	A/μs, V _R = 30 V	-	18	-		
	t _{rr1}	T _J = 25 °C		-	37	55	ns	
	t _{rr2}	T _J = 125 °C		-	55	90		
Peak recovery current	I _{RRM1}	T _J = 25 °C	I _F = 8.0 A dI _F /dt = 200 A/μs V _B = 200 V	-	3.5	5.0	A	
See fig. 6	I _{RRM2}	T _J = 125 °C		-	4.5	8.0		
Reverse recovery charge	Q _{rr1}	T _J = 25 °C		-	65	138		
See fig. 7	Q _{rr2}	T _J = 125 °C	VR - 200 V	-	124	360		
Peak rate of fall recovery current during t _b See fig. 8	dl _{(rec)M} /dt1	$I_{(rec)M}/dt1$ $T_J = 25 \ ^{\circ}C$		-	240	-		
	dl _{(rec)M} /dt2	T _J = 125 °C		-	210	-	A/µs	

THERMAL - MECHANICAL SPECIFICATIONS PER LEG							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Lead temperature	T _{lead}	0.063" from case (1.6 mm) for 10 s	-	-	300	°C	
Junction to case, single leg conducting	P		-	-	3.5		
Junction to case, both legs conducting	R _{thJC}		-	-	1.75	κ/w	
Thermal resistance, junction to ambient	R _{thJA}	Typical socket mount	-	-	80		
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.5	-		
Waight			-	2.0	-	g	
Weight			-	0.07	-	oz.	
Mounting torque			6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)	
Marking device		Case style 3L TO-220AB		HFA16TA60C			

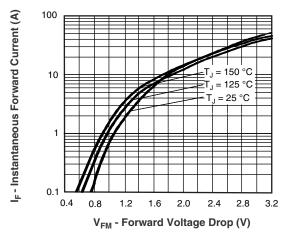


Fig. 1 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current (Per Leg)

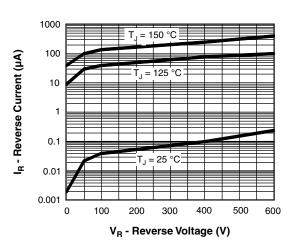


Fig. 2 - Typical Reverse Current vs. Reverse Voltage (Per Leg)

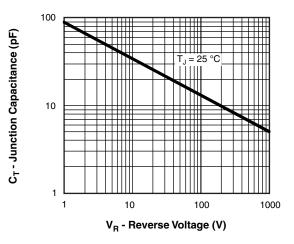


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

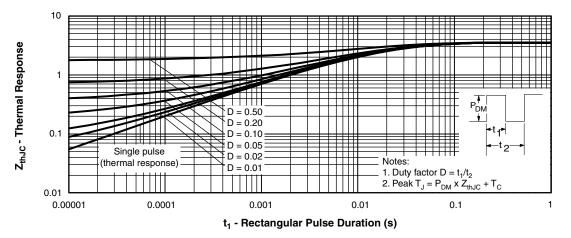


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

 Revision: 16-Dec-2021
 3
 Document Number: 96203

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

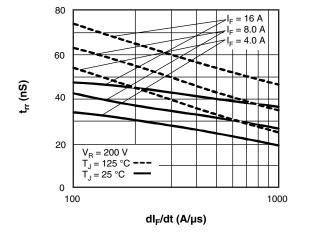


Fig. 5 - Typical Reverse Recovery Time vs. dl_F/dt (Per Leg)

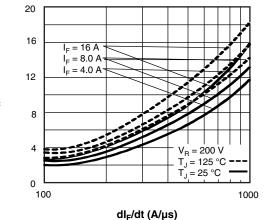


Fig. 6 - Typical Recovery Current vs. dl_F/dt (Per Leg)

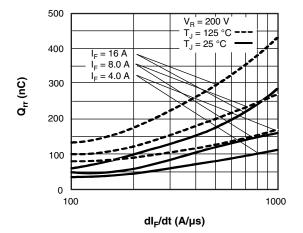


Fig. 7 - Typical Stored Charge vs. dl_F/dt (Per Leg)

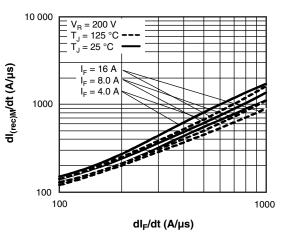


Fig. 8 - Typical dI_{(rec)M}/dt vs. dI_F/dt(Per Leg)

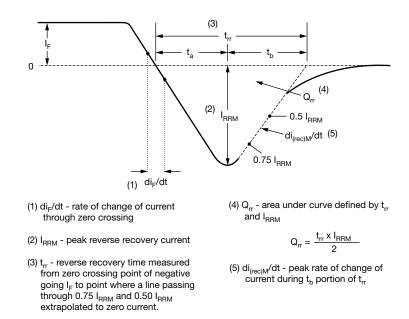


Fig. 9 - Reverse Recovery Waveform and Definitions

Revision: 16-Dec-2021	4	Document Number: 96203
For technical questions within your region:	DiodesAmericas@vishay.com, DiodesAsia@v	vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE		
ARE SUBJECT TO SPEC	IFIC DISCLAIMERS, SET FORTH AT www.vi	<u>shay.com/doc?91000</u>

VS-HFA16TA60C-M3

Vishay Semiconductors

VS-HFA16TA60C-M3

Vishay Semiconductors

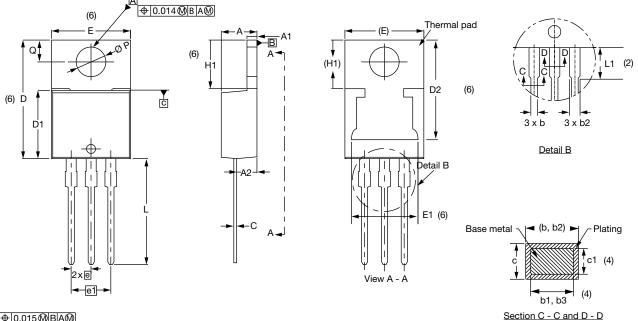
ORDERING INFORMATION TABLE

www.vishay.com

VISHAY

Device code	VS-	HF	Α	16	ТА	60	С	-M3
		(2)	(3)	(4)	(5)	(6)	(7)	(8)
	1 - 2 - 3 - 4 - 5 - 6 - 7 -	HEX Elec Cur Pac TA : Volt	hay Sem (FRED [®] ctron irra rent rati kage: = 3L TO cage rati cuit conf commo	⁹ family adiated ng (16 = -220AB ng (60 = iguratio	= 16 A) = 600 V) n:			
	8 -		ironmer 3 = halog	-		-compli	ant, and	d termin

ORDERING INFORMATION (Example)				
PREFERRED P/N	BASE QUANTITY	PACKAGING DESCRIPTION		
VS-HFA16TA60C-M3	50	Antistatic plastic tube		


LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?96154				
Part marking information	www.vishay.com/doc?95028				
SPICE model	www.vishay.com/doc?96596				

Vishay Semiconductors

TO-220AB 3L

DIMENSIONS in millimeters and inches

⊕0.015@BA@

SYMBOL	MILLIN	IETERS	ERS INCHES		
STINDUL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.25	4.65	0.167	0.183	
A1	1.14	1.40	0.045	0.055	
A2	2.50	2.92	0.098	0.115	
b	0.69	1.01	0.027	0.040	
b1	0.38	0.97	0.015	0.038	4
b2	1.20	1.73	0.047	0.068	
b3	1.14	1.73	0.045	0.068	4
С	0.36	0.61	0.014	0.024	
c1	0.36	0.56	0.014	0.022	4
D	14.85	15.35	0.585	0.604	3
D1	8.38	9.02	0.330	0.355	

MILLIMETERS	INCHES

Conforms to JEDEC[®] outline TO-220AB

SYMBOL			INCILO		NOTES
STIVIDOL	MIN.	MAX.	MIN.	MAX.	NOTES
D2	11.68	13.30	0.460	0.524	6, 7
E	10.11	10.51	0.398	0.414	3, 6
E1	6.86	8.89	0.270	0.350	6
е	2.41	2.67	0.095	0.105	
e1	4.88	5.28	0.192	0.208	
H1	6.09	6.48	0.240	0.255	6
L	13.52	14.02	0.532	0.552	
L1	3.32	3.82	0.131	0.150	2
ØР	3.54	3.91	0.139	0.154	
Q	2.60	3.00	0.102	0.118	

Notes

 $^{(1)}\,$ Dimensioning and tolerancing as per ASME Y14.5M-1994

⁽²⁾ Lead dimension and finish uncontrolled in L1

(3) Dimension D, D1, and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body

⁽⁴⁾ Dimension b1, b3, and c1 apply to base metal only

(5) Controlling dimensions: inches

⁽⁶⁾ Thermal pad contour optional within dimensions E, H1, D2, and E1

⁽⁷⁾ Outline conforms to JEDEC[®] TO-220, except D2

Revision: 22-Feb-2024

1

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jul-2024