Bipolar Power Transistors ## **NPN Silicon** ## NJT4031N, NJV4031NT1G, NJV4031NT3G #### **Features** - Epoxy Meets UL 94, V-0 @ 0.125 in - NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant ## MAXIMUM RATINGS (T_C = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |--------------------------------|------------------|-------|------| | Collector-Emitter Voltage | V _{CEO} | 40 | Vdc | | Collector-Base Voltage | V _{CB} | 40 | Vdc | | Emitter-Base Voltage | V _{EB} | 6.0 | Vdc | | Base Current - Continuous | Ι _Β | 1.0 | Adc | | Collector Current - Continuous | I _C | 3.0 | Adc | | Collector Current – Peak | I _{CM} | 5.0 | Adc | | ESD – Human Body Model | HBM | 3B | V | | ESD - Machine Model | MM | С | V | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|--|----------------|------| | Total Power Dissipation Total P _D @ T _A = 25°C (Note 1) Total P _D @ T _A = 25°C (Note 2) | P _D | 2.0
0.80 | W | | Thermal Resistance, Junction-to-Case Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2) | $egin{array}{c} R_{ heta JA} \ R_{ heta JA} \end{array}$ | 64
155 | °C/W | | Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds | T _L | 260 | °C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -55 to
+150 | °C | - 1. Mounted on 1" sq. (645 sq. mm) Collector pad on FR-4 bd material. - 2. Mounted on 0.012" sq. (7.6 sq. mm) Collector pad on FR-4 bd material. # NPN TRANSISTOR 3.0 AMPERES 40 VOLTS, 2.0 WATTS # DIAGRAM 4031N= **MARKING** Assembly Location Year W = Work Week 4031N = Specific Device Code ■ Pb–Free Package ## ORDERING INFORMATION | Device | Package | Shipping [†] | |-------------|-----------|-----------------------| | NJT4031NT1G | SOT-223 | 1000 / Tape & | | NJV4031NT1G | (Pb-Free) | Reel | | NJT4031NT3G | SOT-223 | 4000 / Tape & | | NJV4031NT3G | (Pb-Free) | Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ## NJT4031N, NJV4031NT1G, NJV4031NT3G **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|-----------------------|-------------------|-------------|-------------------------|------| | OFF CHARACTERISTICS | • | <u>.</u> | | . !. | | | Collector–Emitter Sustaining Voltage ($I_C = 10 \text{ mAdc}, I_B = 0 \text{ Adc}$) | V _{CEO(sus)} | 40 | - | - | Vdc | | Emitter–Base Voltage ($I_E = 50 \mu Adc$, $I_C = 0 Adc$) | V _{EBO} | 6.0 | - | - | Vdc | | Collector Cutoff Current (V _{CB} = 40 Vdc) | I _{CBO} | - | - | 100 | nAdc | | Emitter Cutoff Current (V _{BE} = 6.0 Vdc) | I _{EBO} | - | - | 100 | nAdc | | ON CHARACTERISTICS (Note 3) | | | • | • | | | Collector–Emitter Saturation Voltage ($I_C = 0.5 \text{ Adc}$, $I_B = 5.0 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 10 \text{ mAdc}$) ($I_C = 3.0 \text{ Adc}$, $I_B = 0.3 \text{ Adc}$) | V _{CE(sat)} | -
-
- | -
-
- | 0.100
0.150
0.300 | Vdc | | Base–Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 0.1 Adc) | V _{BE(sat)} | - | - | 1.0 | Vdc | | Base-Emitter On Voltage ($I_C = 1.0 \text{ Adc}$, $V_{CE} = 2.0 \text{ Vdc}$) | V _{BE(on)} | - | _ | 1.0 | Vdc | | DC Current Gain
($I_C = 0.5 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc}$)
($I_C = 1.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc}$)
($I_C = 3.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc}$) | h _{FE} | 220
200
100 | -
-
- | 500 | | | DYNAMIC CHARACTERISTICS | | | | | | | Output Capacitance
(V _{CB} = 10 Vdc, f = 1.0 MHz) | C _{ob} | - | 25 | _ | pF | | Input Capacitance
(V _{EB} = 5.0 Vdc, f = 1.0 MHz) | C _{ib} | - | 170 | - | pF | | Current-Gain - Bandwidth Product (Note 4)
(I _C = 500 mA, V _{CE} = 10 V, F _{test} = 1.0 MHz) | f _T | - | 215 | - | MHz | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width $\leq 300 \, \mu s$, Duty Cycle $\leq 2\%$. 4. $f_T = |h_{FE}| \cdot f_{test}$ ## NJT4031N, NJV4031NT1G, NJV4031NT3G ## **TYPICAL CHARACTERISTICS** 600 150°C V_{CE} = 4 V Figure 2. DC Current Gain Figure 3. DC Current Gain Figure 4. Collector-Emitter Saturation Voltage Figure 5. Collector-Emitter Saturation Voltage Figure 6. Collector Saturation Region Figure 7. V_{BE(on)} Voltage ## NJT4031N, NJV4031NT1G, NJV4031NT3G ### **TYPICAL CHARACTERISTICS** Figure 8. Base-Emitter Saturation Voltage Figure 9. Base-Emitter Saturation Voltage Figure 10. Input Capacitance Figure 11. Output Capacitance 80 90 Figure 12. Current-Gain Bandwidth Product Figure 13. Safe Operating Area **SOT-223 (TO-261)** CASE 318E-04 ISSUE R **DATE 02 OCT 2018** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - 2. CONTROLLING DIMENSION: MILLIMETERS - DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS, MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE. - 4. DATUMS A AND B ARE DETERMINED AT DATUM H. - 5. ALLIS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY. - 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61. | | MILLIMETERS | | | | |-----|-------------|------|------|--| | DIM | MIN. | N□M. | MAX. | | | Α | 1.50 | 1.63 | 1.75 | | | A1 | 0.02 | 0.06 | 0.10 | | | b | 0.60 | 0.75 | 0.89 | | | b1 | 2.90 | 3.06 | 3.20 | | | c | 0.24 | 0.29 | 0.35 | | | D | 6.30 | 6.50 | 6.70 | | | E | 3.30 | 3.50 | 3.70 | | | е | 2.30 BSC | | | | | L | 0.20 | | | | | L1 | 1.50 | 1.75 | 2.00 | | | He | 6.70 | 7.00 | 7.30 | | | θ | 0° | | 10° | | RECOMMENDED MOUNTING FOOTPRINT | DOCUMENT NUMBER: | 98ASB42680B | Electronic versions are uncontrolled except when accessed directly from the Document Reposito
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|------------------|--|-------------|--| | DESCRIPTION: | SOT-223 (TO-261) | | PAGE 1 OF 2 | | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ## **SOT-223 (TO-261)** CASE 318E-04 ISSUE R **DATE 02 OCT 2018** | STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR | STYLE 2:
PIN 1. ANODE
2. CATHODE
3. NC
4. CATHODE | STYLE 3:
PIN 1. GATE
2. DRAIN
3. SOURCE
4. DRAIN | STYLE 4:
PIN 1. SOURCE
2. DRAIN
3. GATE
4. DRAIN | STYLE 5:
PIN 1. DRAIN
2. GATE
3. SOURCE
4. GATE | |---|--|--|--|--| | STYLE 6:
PIN 1. RETURN
2. INPUT
3. OUTPUT
4. INPUT | STYLE 7:
PIN 1. ANODE 1
2. CATHODE
3. ANODE 2
4. CATHODE | STYLE 8:
CANCELLED | STYLE 9:
PIN 1. INPUT
2. GROUND
3. LOGIC
4. GROUND | STYLE 10:
PIN 1. CATHODE
2. ANODE
3. GATE
4. ANODE | | STYLE 11:
PIN 1. MT 1
2. MT 2
3. GATE
4. MT 2 | STYLE 12:
PIN 1. INPUT
2. OUTPUT
3. NC
4. OUTPUT | STYLE 13:
PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR | | | # GENERIC MARKING DIAGRAM* A = Assembly Location Y = Year W = Work Week $XXXXX \ = Specific \ Device \ Code$ = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASB42680B | Electronic versions are uncontrolled except when accessed directly from the Document Reposito
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|------------------|--|-------------| | DESCRIPTION: | SOT-223 (TO-261) | | PAGE 2 OF 2 | ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales